Álgebra Ejemplos

Hallar las raíces/ceros usando la prueba de raíces racionales f(x)=9x^3+9x^2-4x-4
Paso 1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 3
Sustituye las posibles raíces una por una en el polinomio para obtener las raíces reales. Simplifica para comprobar si el valor es , lo que significa que es una raíz.
Paso 4
Simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Toca para ver más pasos...
Paso 4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.1.1
Eleva a la potencia de .
Paso 4.1.2
Multiplica por .
Paso 4.1.3
Eleva a la potencia de .
Paso 4.1.4
Multiplica por .
Paso 4.1.5
Multiplica por .
Paso 4.2
Simplifica mediante suma y resta.
Toca para ver más pasos...
Paso 4.2.1
Suma y .
Paso 4.2.2
Suma y .
Paso 4.2.3
Resta de .
Paso 5
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 6
Luego, obtén las raíces del polinomio restante. El orden del polinomio se ha reducido por .
Toca para ver más pasos...
Paso 6.1
Coloca los números que representan el divisor y el dividendo en una configuración tipo división.
  
Paso 6.2
El primer número en el dividendo se pone en la primera posición del área del resultado (debajo de la recta horizontal).
  
Paso 6.3
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
  
Paso 6.4
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
  
Paso 6.5
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
  
Paso 6.6
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
  
Paso 6.7
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
 
Paso 6.8
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
 
Paso 6.9
Todos los números excepto el último se convierten en coeficientes del polinomio del cociente. El último valor de la línea del resultado es el resto.
Paso 6.10
Simplifica el polinomio del cociente.
Paso 7
Reescribe como .
Paso 8
Reescribe como .
Paso 9
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 10
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 10.1
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 10.1.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 10.1.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 10.2
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 10.3
Reescribe como .
Paso 10.4
Reescribe como .
Paso 10.5
Factoriza.
Toca para ver más pasos...
Paso 10.5.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 10.5.2
Elimina los paréntesis innecesarios.
Paso 11
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 12
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 12.1
Establece igual a .
Paso 12.2
Resta de ambos lados de la ecuación.
Paso 13
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 13.1
Establece igual a .
Paso 13.2
Resuelve en .
Toca para ver más pasos...
Paso 13.2.1
Resta de ambos lados de la ecuación.
Paso 13.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 13.2.2.1
Divide cada término en por .
Paso 13.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 13.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 13.2.2.2.1.1
Cancela el factor común.
Paso 13.2.2.2.1.2
Divide por .
Paso 13.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 13.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 14
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 14.1
Establece igual a .
Paso 14.2
Resuelve en .
Toca para ver más pasos...
Paso 14.2.1
Suma a ambos lados de la ecuación.
Paso 14.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 14.2.2.1
Divide cada término en por .
Paso 14.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 14.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 14.2.2.2.1.1
Cancela el factor común.
Paso 14.2.2.2.1.2
Divide por .
Paso 15
La solución final comprende todos los valores que hacen verdadera.
Paso 16