Álgebra Ejemplos

Hallar la simetría f(x)=x raíz cuadrada de 2-x^2
Paso 1
Determina si la función es impar, par o ninguna para obtener la simetría.
1. Si es impar, la función es simétrica con respecto al origen.
2. Si es par, la función es simétrica con respecto al eje y.
Paso 2
Obtén .
Toca para ver más pasos...
Paso 2.1
Obtén mediante la sustitución de para todos los casos de en .
Paso 2.2
Aplica la regla del producto a .
Paso 2.3
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 2.3.1
Mueve .
Paso 2.3.2
Multiplica por .
Toca para ver más pasos...
Paso 2.3.2.1
Eleva a la potencia de .
Paso 2.3.2.2
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.3
Suma y .
Paso 2.4
Eleva a la potencia de .
Paso 3
Una función es par si .
Toca para ver más pasos...
Paso 3.1
Comprueba si .
Paso 3.2
Como , la función no es par.
La función no es par
La función no es par
Paso 4
Una función es impar si .
Toca para ver más pasos...
Paso 4.1
Elimina los paréntesis.
Paso 4.2
Como , la función es impar.
La función es impar.
La función es impar.
Paso 5
Como la función es impar, es simétrica con respecto al origen.
Simetría de origen
Paso 6
Como la función no es par, no es simétrica con respecto al eje y.
No hay simetría del eje y
Paso 7
Determina la simetría de la función.
Simetría de origen
Paso 8