Álgebra Ejemplos

حل من أجل x (6x+5)/(x-4)>(8-2x)/(x-4)
Paso 1
Como la expresión en cada lado de la ecuación tiene el mismo denominador, los numeradores deben ser iguales.
Paso 2
Mueve todos los términos que contengan al lado izquierdo de la desigualdad.
Toca para ver más pasos...
Paso 2.1
Suma a ambos lados de la desigualdad.
Paso 2.2
Suma y .
Paso 3
Mueve todos los términos que no contengan al lado derecho de la desigualdad.
Toca para ver más pasos...
Paso 3.1
Resta de ambos lados de la desigualdad.
Paso 3.2
Resta de .
Paso 4
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 4.1
Divide cada término en por .
Paso 4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.1.1
Cancela el factor común.
Paso 4.2.1.2
Divide por .
Paso 5
Obtén el dominio de .
Toca para ver más pasos...
Paso 5.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 5.2
Suma a ambos lados de la ecuación.
Paso 5.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 6
Usa cada raíz para crear intervalos de prueba.
Paso 7
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 7.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.1.2
Reemplaza con en la desigualdad original.
Paso 7.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 7.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.2.2
Reemplaza con en la desigualdad original.
Paso 7.2.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 7.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 7.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 7.3.2
Reemplaza con en la desigualdad original.
Paso 7.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 7.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Verdadero
Falso
Verdadero
Paso 8
La solución consiste en todos los intervalos verdaderos.
o
Paso 9
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 10