Álgebra Ejemplos

حل من أجل x (x-1)/(8x)=(x^2+6x+5)/(8x^2)-1/x
Paso 1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 2.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.4
Los factores primos para son .
Toca para ver más pasos...
Paso 2.4.1
tiene factores de y .
Paso 2.4.2
tiene factores de y .
Paso 2.5
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.6
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 2.7
Multiplica .
Toca para ver más pasos...
Paso 2.7.1
Multiplica por .
Paso 2.7.2
Multiplica por .
Paso 2.8
El factor para es en sí mismo.
ocurre vez.
Paso 2.9
Los factores para son , que es multiplicada una por la otra veces.
ocurre veces.
Paso 2.10
El factor para es en sí mismo.
ocurre vez.
Paso 2.11
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.12
Multiplica por .
Paso 2.13
El MCM para es la parte numérica multiplicada por la parte variable.
Paso 3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1
Factoriza de .
Paso 3.2.2.2
Cancela el factor común.
Paso 3.2.2.3
Reescribe la expresión.
Paso 3.2.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.3.1
Factoriza de .
Paso 3.2.3.2
Cancela el factor común.
Paso 3.2.3.3
Reescribe la expresión.
Paso 3.2.4
Aplica la propiedad distributiva.
Paso 3.2.5
Simplifica la expresión.
Toca para ver más pasos...
Paso 3.2.5.1
Multiplica por .
Paso 3.2.5.2
Reescribe como .
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.3.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.3.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1.2.1
Factoriza de .
Paso 3.3.1.2.2
Cancela el factor común.
Paso 3.3.1.2.3
Reescribe la expresión.
Paso 3.3.1.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1.3.1
Cancela el factor común.
Paso 3.3.1.3.2
Reescribe la expresión.
Paso 3.3.1.4
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 3.3.1.4.1
Aplica la propiedad distributiva.
Paso 3.3.1.4.2
Aplica la propiedad distributiva.
Paso 3.3.1.4.3
Aplica la propiedad distributiva.
Paso 3.3.1.5
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 3.3.1.5.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.3.1.5.1.1
Multiplica por .
Paso 3.3.1.5.1.2
Mueve a la izquierda de .
Paso 3.3.1.5.1.3
Multiplica por .
Paso 3.3.1.5.1.4
Multiplica por .
Paso 3.3.1.5.2
Suma y .
Paso 3.3.1.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.1.6.1
Mueve el signo menos inicial en al numerador.
Paso 3.3.1.6.2
Factoriza de .
Paso 3.3.1.6.3
Cancela el factor común.
Paso 3.3.1.6.4
Reescribe la expresión.
Paso 3.3.1.7
Multiplica por .
Paso 3.3.2
Resta de .
Paso 4
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 4.1
Resta de ambos lados de la ecuación.
Paso 4.2
Suma a ambos lados de la ecuación.
Paso 4.3
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 4.3.1
Resta de .
Paso 4.3.2
Suma y .
Paso 4.4
Suma y .