Álgebra Ejemplos

حل المتراجحة من أجل x tan(x)>-1
Paso 1
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Paso 2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.1
El valor exacto de es .
Paso 3
La función tangente es negativa en el segundo y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Paso 4
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Paso 4.1
Suma a .
Paso 4.2
El ángulo resultante de es positivo y coterminal con .
Paso 5
Obtén el período de .
Toca para ver más pasos...
Paso 5.1
El período de la función puede calcularse mediante .
Paso 5.2
Reemplaza con en la fórmula para el período.
Paso 5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 5.4
Divide por .
Paso 6
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Paso 6.1
Suma y para obtener el ángulo positivo.
Paso 6.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 6.3
Combina fracciones.
Toca para ver más pasos...
Paso 6.3.1
Combina y .
Paso 6.3.2
Combina los numeradores sobre el denominador común.
Paso 6.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.4.1
Mueve a la izquierda de .
Paso 6.4.2
Resta de .
Paso 6.5
Enumera los nuevos ángulos.
Paso 7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 8
Consolida las respuestas.
, para cualquier número entero
Paso 9
Obtén el dominio de .
Toca para ver más pasos...
Paso 9.1
Establece el argumento en igual que para obtener el lugar donde no está definida la expresión.
, para cualquier número entero
Paso 9.2
El dominio son todos los valores de que hacen que la expresión sea definida.
, para cualquier número entero
, para cualquier número entero
Paso 10
Usa cada raíz para crear intervalos de prueba.
Paso 11
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 11.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 11.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.1.2
Reemplaza con en la desigualdad original.
Paso 11.1.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 11.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.2.2
Reemplaza con en la desigualdad original.
Paso 11.2.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 11.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 11.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.3.2
Reemplaza con en la desigualdad original.
Paso 11.3.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Falso
Verdadero
Falso
Falso
Verdadero
Falso
Paso 12
La solución consiste en todos los intervalos verdaderos.
, para cualquier número entero
Paso 13