Álgebra Ejemplos

حل من أجل x log base cube root of 3 of x^10+6=36
Paso 1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1
El logaritmo en base de es .
Toca para ver más pasos...
Paso 1.1.1
Reescribe como una ecuación.
Paso 1.1.2
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y no es igual a , entonces es equivalente a .
Paso 1.1.3
Crea expresiones equivalentes en la ecuación que tengan bases iguales.
Paso 1.1.4
Como las bases son las mismas, las dos expresiones solo son iguales si los exponentes también son iguales.
Paso 1.1.5
La variable es igual a .
Paso 1.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.2.1
Mueve .
Paso 1.2.2
Multiplica por .
Paso 2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 2.1
Resta de ambos lados de la ecuación.
Paso 2.2
Resta de .
Paso 3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.1
Divide cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Divide por .
Paso 4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5
Simplifica .
Toca para ver más pasos...
Paso 5.1
Reescribe como .
Paso 5.2
Multiplica por .
Paso 5.3
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 5.3.1
Multiplica por .
Paso 5.3.2
Eleva a la potencia de .
Paso 5.3.3
Eleva a la potencia de .
Paso 5.3.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.3.5
Suma y .
Paso 5.3.6
Reescribe como .
Toca para ver más pasos...
Paso 5.3.6.1
Usa para reescribir como .
Paso 5.3.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.3.6.3
Combina y .
Paso 5.3.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.6.4.1
Cancela el factor común.
Paso 5.3.6.4.2
Reescribe la expresión.
Paso 5.3.6.5
Simplifica.
Paso 5.4
Combina con la regla del producto para radicales.
Paso 6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 7
The variable got canceled for any value of .
Todos los números reales
Paso 8
El resultado puede mostrarse de distintas formas.
Todos los números reales
Notación de intervalo: