Álgebra Ejemplos

حل من أجل x x^2-3x-2=|x-1|
Paso 1
Reescribe la ecuación como .
Paso 2
Elimina el término de valor absoluto. Esto crea un en el lado derecho de la ecuación debido a .
Paso 3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.2
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 3.3
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.2
Resta de .
Paso 3.4
Mueve todos los términos al lado izquierdo de la ecuación y simplifica.
Toca para ver más pasos...
Paso 3.4.1
Suma a ambos lados de la ecuación.
Paso 3.4.2
Suma y .
Paso 3.5
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3.6
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3.7
Simplifica.
Toca para ver más pasos...
Paso 3.7.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.7.1.1
Eleva a la potencia de .
Paso 3.7.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.7.1.2.1
Multiplica por .
Paso 3.7.1.2.2
Multiplica por .
Paso 3.7.1.3
Suma y .
Paso 3.7.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.7.1.4.1
Factoriza de .
Paso 3.7.1.4.2
Reescribe como .
Paso 3.7.1.5
Retira los términos de abajo del radical.
Paso 3.7.2
Multiplica por .
Paso 3.7.3
Simplifica .
Paso 3.8
La respuesta final es la combinación de ambas soluciones.
Paso 3.9
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.10
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 3.11
Simplifica .
Toca para ver más pasos...
Paso 3.11.1
Reescribe.
Paso 3.11.2
Simplifica mediante la adición de ceros.
Paso 3.11.3
Aplica la propiedad distributiva.
Paso 3.11.4
Simplifica.
Toca para ver más pasos...
Paso 3.11.4.1
Multiplica por .
Paso 3.11.4.2
Multiplica por .
Paso 3.12
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.12.1
Resta de ambos lados de la ecuación.
Paso 3.12.2
Resta de .
Paso 3.13
Suma a ambos lados de la ecuación.
Paso 3.14
Suma y .
Paso 3.15
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.15.1
Factoriza de .
Toca para ver más pasos...
Paso 3.15.1.1
Factoriza de .
Paso 3.15.1.2
Factoriza de .
Paso 3.15.1.3
Reescribe como .
Paso 3.15.1.4
Factoriza de .
Paso 3.15.1.5
Factoriza de .
Paso 3.15.2
Factoriza.
Toca para ver más pasos...
Paso 3.15.2.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 3.15.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 3.15.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 3.15.2.2
Elimina los paréntesis innecesarios.
Paso 3.16
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.17
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.17.1
Establece igual a .
Paso 3.17.2
Suma a ambos lados de la ecuación.
Paso 3.18
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.18.1
Establece igual a .
Paso 3.18.2
Resta de ambos lados de la ecuación.
Paso 3.19
La solución final comprende todos los valores que hacen verdadera.
Paso 3.20
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Excluye las soluciones que no hagan que sea verdadera.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: