Ingresa un problema...
Álgebra Ejemplos
Paso 1
Suma a ambos lados de la ecuación.
Paso 2
Paso 2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 2.2
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 2.3
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.4
Como no tiene factores además de y .
es un número primo
Paso 2.5
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 2.6
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 2.7
El factor para es en sí mismo.
ocurre vez.
Paso 2.8
El MCM de es el resultado de la multiplicación de todos los factores la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 2.9
El mínimo común múltiplo de algunos números es el número más pequeño del que los números son factores.
Paso 3
Paso 3.1
Multiplica cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Simplifica cada término.
Paso 3.2.1.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.2
Multiplica .
Paso 3.2.1.2.1
Combina y .
Paso 3.2.1.2.2
Multiplica por .
Paso 3.2.1.3
Cancela el factor común de .
Paso 3.2.1.3.1
Cancela el factor común.
Paso 3.2.1.3.2
Reescribe la expresión.
Paso 3.2.1.4
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 3.2.1.5
Cancela el factor común de .
Paso 3.2.1.5.1
Cancela el factor común.
Paso 3.2.1.5.2
Reescribe la expresión.
Paso 3.2.1.6
Aplica la propiedad distributiva.
Paso 3.2.1.7
Multiplica por .
Paso 3.2.1.8
Mueve a la izquierda de .
Paso 3.2.1.9
Aplica la propiedad distributiva.
Paso 3.2.1.10
Multiplica por .
Paso 3.2.1.11
Aplica la propiedad distributiva.
Paso 3.2.1.12
Multiplica por .
Paso 3.2.1.13
Multiplica por .
Paso 3.2.2
Simplifica mediante la adición de términos.
Paso 3.2.2.1
Resta de .
Paso 3.2.2.2
Suma y .
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Aplica la propiedad distributiva.
Paso 3.3.2
Multiplica.
Paso 3.3.2.1
Multiplica por .
Paso 3.3.2.2
Multiplica por .
Paso 4
Paso 4.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 4.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 4.3
Simplifica.
Paso 4.3.1
Simplifica el numerador.
Paso 4.3.1.1
Uno elevado a cualquier potencia es uno.
Paso 4.3.1.2
Multiplica .
Paso 4.3.1.2.1
Multiplica por .
Paso 4.3.1.2.2
Multiplica por .
Paso 4.3.1.3
Suma y .
Paso 4.3.2
Multiplica por .
Paso 4.4
La respuesta final es la combinación de ambas soluciones.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: