Álgebra Ejemplos

حل المتراجحة من أجل x x/(x^2+1)<=1
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Simplifica .
Toca para ver más pasos...
Paso 2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2
Combina y .
Paso 2.3
Combina los numeradores sobre el denominador común.
Paso 2.4
Simplifica el numerador.
Toca para ver más pasos...
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Multiplica por .
Paso 2.4.3
Reordena los términos.
Paso 2.5
Factoriza de .
Paso 2.6
Factoriza de .
Paso 2.7
Factoriza de .
Paso 2.8
Reescribe como .
Paso 2.9
Factoriza de .
Paso 2.10
Reescribe como .
Paso 2.11
Mueve el negativo al frente de la fracción.
Paso 3
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 4
Usa la fórmula cuadrática para obtener las soluciones.
Paso 5
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 6
Simplifica.
Toca para ver más pasos...
Paso 6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 6.1.1
Eleva a la potencia de .
Paso 6.1.2
Multiplica .
Toca para ver más pasos...
Paso 6.1.2.1
Multiplica por .
Paso 6.1.2.2
Multiplica por .
Paso 6.1.3
Resta de .
Paso 6.1.4
Reescribe como .
Paso 6.1.5
Reescribe como .
Paso 6.1.6
Reescribe como .
Paso 6.2
Multiplica por .
Paso 7
La respuesta final es la combinación de ambas soluciones.
Paso 8
Resta de ambos lados de la ecuación.
Paso 9
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 10
Reescribe como .
Paso 11
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 11.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 11.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 11.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 12
Resuelve cada factor para obtener los valores donde la expresión de valor absoluto va de positiva a negativa.
Paso 13
No se puede determinar el coeficiente principal porque no es un polinomio.
No es un polinomio
Paso 14
Como no hay intersecciones reales con x y el coeficiente principal es positivo, la parábola se abre hacia arriba y siempre es mayor que .
No hay solución