Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Divide cada término en por .
Paso 1.2
Simplifica el lado izquierdo.
Paso 1.2.1
Cancela el factor común de .
Paso 1.2.1.1
Cancela el factor común.
Paso 1.2.1.2
Divide por .
Paso 2
Paso 2.1
Resta de ambos lados de la ecuación.
Paso 2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3
Combina y .
Paso 2.4
Combina los numeradores sobre el denominador común.
Paso 2.5
Simplifica el numerador.
Paso 2.5.1
Multiplica por .
Paso 2.5.2
Resta de .
Paso 2.6
Mueve el negativo al frente de la fracción.
Paso 3
Paso 3.1
Divide cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Paso 3.2.1
Cancela el factor común de .
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Divide por .
Paso 3.3
Simplifica el lado derecho.
Paso 3.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 3.3.2
Cancela el factor común de .
Paso 3.3.2.1
Mueve el signo menos inicial en al numerador.
Paso 3.3.2.2
Factoriza de .
Paso 3.3.2.3
Factoriza de .
Paso 3.3.2.4
Cancela el factor común.
Paso 3.3.2.5
Reescribe la expresión.
Paso 3.3.3
Multiplica por .
Paso 3.3.4
Multiplica por .
Paso 3.3.5
La división de dos valores negativos da como resultado un valor positivo.
Paso 4
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 5
Paso 5.1
Reescribe como .
Paso 5.2
Cualquier raíz de es .
Paso 5.3
Multiplica por .
Paso 5.4
Combina y simplifica el denominador.
Paso 5.4.1
Multiplica por .
Paso 5.4.2
Eleva a la potencia de .
Paso 5.4.3
Eleva a la potencia de .
Paso 5.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 5.4.5
Suma y .
Paso 5.4.6
Reescribe como .
Paso 5.4.6.1
Usa para reescribir como .
Paso 5.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.4.6.3
Combina y .
Paso 5.4.6.4
Cancela el factor común de .
Paso 5.4.6.4.1
Cancela el factor común.
Paso 5.4.6.4.2
Reescribe la expresión.
Paso 5.4.6.5
Evalúa el exponente.
Paso 6
Paso 6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: