Álgebra Ejemplos

Simplificar ((x^2+8x+16)/(x+3))÷((2x+8)/(x^2-9))
Paso 1
Para dividir por una fracción, multiplica por su recíproca.
Paso 2
Factoriza con la regla del cuadrado perfecto.
Toca para ver más pasos...
Paso 2.1
Reescribe como .
Paso 2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 2.3
Reescribe el polinomio.
Paso 2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 3
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.1
Reescribe como .
Paso 3.2
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 4
Simplifica los términos.
Toca para ver más pasos...
Paso 4.1
Factoriza de .
Toca para ver más pasos...
Paso 4.1.1
Factoriza de .
Paso 4.1.2
Factoriza de .
Paso 4.1.3
Factoriza de .
Paso 4.2
Simplifica los términos.
Toca para ver más pasos...
Paso 4.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.1.1
Factoriza de .
Paso 4.2.1.2
Factoriza de .
Paso 4.2.1.3
Cancela el factor común.
Paso 4.2.1.4
Reescribe la expresión.
Paso 4.2.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.2.1
Cancela el factor común.
Paso 4.2.2.2
Reescribe la expresión.
Paso 4.2.3
Aplica la propiedad distributiva.
Paso 4.2.4
Combina y .
Paso 4.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.5.1
Factoriza de .
Paso 4.2.5.2
Cancela el factor común.
Paso 4.2.5.3
Reescribe la expresión.
Paso 4.3
Simplifica cada término.
Toca para ver más pasos...
Paso 4.3.1
Aplica la propiedad distributiva.
Paso 4.3.2
Multiplica por .
Paso 5
Obtén el denominador común
Toca para ver más pasos...
Paso 5.1
Escribe como una fracción con el denominador .
Paso 5.2
Multiplica por .
Paso 5.3
Multiplica por .
Paso 5.4
Escribe como una fracción con el denominador .
Paso 5.5
Multiplica por .
Paso 5.6
Multiplica por .
Paso 6
Simplifica los términos.
Toca para ver más pasos...
Paso 6.1
Combina los numeradores sobre el denominador común.
Paso 6.2
Simplifica cada término.
Toca para ver más pasos...
Paso 6.2.1
Aplica la propiedad distributiva.
Paso 6.2.2
Multiplica por .
Paso 6.2.3
Mueve a la izquierda de .
Paso 6.2.4
Multiplica por .
Paso 6.2.5
Multiplica por .
Paso 6.3
Suma y .
Paso 7
Factoriza con el método AC.
Toca para ver más pasos...
Paso 7.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 7.2
Escribe la forma factorizada mediante estos números enteros.