Álgebra Ejemplos

حل من أجل x (x+m)/m-(x+n)/n=(m^2+n^2)/(mn)-2
Paso 1
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 1.2
Como contiene tanto números como variables, hay dos pasos para obtener el MCM. Obtén el MCM para la parte numérica y, luego, obtén el MCM para la parte variable .
Paso 1.3
El MCM es el número positivo más pequeño en el que se dividen uniformemente todos los números.
1. Indica los factores primos de cada número.
2. Multiplica cada factor la mayor cantidad de veces que aparece en cualquier número.
Paso 1.4
El número no es un número primo porque solo tiene un factor positivo, que es sí mismo.
No es primo
Paso 1.5
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los números.
Paso 1.6
El factor para es en sí mismo.
ocurre vez.
Paso 1.7
El factor para es en sí mismo.
ocurre vez.
Paso 1.8
El factor para es en sí mismo.
ocurre vez.
Paso 1.9
El factor para es en sí mismo.
ocurre vez.
Paso 1.10
El MCM de es el resultado de la multiplicación de todos los factores primos la mayor cantidad de veces que ocurran en cualquiera de los términos.
Paso 1.11
Multiplica por .
Paso 2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 2.1
Multiplica cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.1
Factoriza de .
Paso 2.2.1.1.2
Cancela el factor común.
Paso 2.2.1.1.3
Reescribe la expresión.
Paso 2.2.1.2
Aplica la propiedad distributiva.
Paso 2.2.1.3
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.3.1
Mueve el signo menos inicial en al numerador.
Paso 2.2.1.3.2
Factoriza de .
Paso 2.2.1.3.3
Cancela el factor común.
Paso 2.2.1.3.4
Reescribe la expresión.
Paso 2.2.1.4
Aplica la propiedad distributiva.
Paso 2.2.1.5
Aplica la propiedad distributiva.
Paso 2.2.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 2.2.2.1
Reordena los factores en los términos y .
Paso 2.2.2.2
Resta de .
Paso 2.2.2.3
Suma y .
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.1.1
Cancela el factor común.
Paso 2.3.1.2
Reescribe la expresión.
Paso 3
Resuelve la ecuación.
Toca para ver más pasos...
Paso 3.1
Factoriza de .
Toca para ver más pasos...
Paso 3.1.1
Factoriza de .
Paso 3.1.2
Factoriza de .
Paso 3.1.3
Factoriza de .
Paso 3.2
Reescribe como .
Paso 3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.3.1
Divide cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Divide por .
Paso 3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.3.1
Combina en una fracción.
Toca para ver más pasos...
Paso 3.3.3.1.1
Mueve el negativo al frente de la fracción.
Paso 3.3.3.1.2
Combina los numeradores sobre el denominador común.
Paso 3.3.3.1.3
Combina los numeradores sobre el denominador común.
Paso 3.3.3.2
Factoriza con la regla del cuadrado perfecto.
Toca para ver más pasos...
Paso 3.3.3.2.1
Reorganiza los términos.
Paso 3.3.3.2.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 3.3.3.2.3
Reescribe el polinomio.
Paso 3.3.3.2.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 3.3.3.3
Cancela el factor común de y .
Toca para ver más pasos...
Paso 3.3.3.3.1
Factoriza de .
Paso 3.3.3.3.2
Factoriza de .
Paso 3.3.3.3.3
Factoriza de .
Paso 3.3.3.3.4
Aplica la regla del producto a .
Paso 3.3.3.3.5
Eleva a la potencia de .
Paso 3.3.3.3.6
Multiplica por .
Paso 3.3.3.3.7
Reordena los términos.
Paso 3.3.3.3.8
Factoriza de .
Paso 3.3.3.3.9
Cancela los factores comunes.
Toca para ver más pasos...
Paso 3.3.3.3.9.1
Multiplica por .
Paso 3.3.3.3.9.2
Cancela el factor común.
Paso 3.3.3.3.9.3
Reescribe la expresión.
Paso 3.3.3.3.9.4
Divide por .