Ingresa un problema...
Álgebra Ejemplos
Paso 1
Paso 1.1
Para obtener el intervalo de la primera parte, obtén dónde el interior del valor absoluto no es negativo.
Paso 1.2
Resta de ambos lados de la desigualdad.
Paso 1.3
En la parte donde no es negativa, elimina el valor absoluto.
Paso 1.4
Para obtener el intervalo de la segunda parte, obtén dónde el interior del valor absoluto es negativo.
Paso 1.5
Resta de ambos lados de la desigualdad.
Paso 1.6
En la parte donde es negativa, elimina el valor absoluto y multiplica por .
Paso 1.7
Escribe como una función definida por partes.
Paso 1.8
Simplifica .
Paso 1.8.1
Simplifica cada término.
Paso 1.8.1.1
Aplica la propiedad distributiva.
Paso 1.8.1.2
Multiplica por .
Paso 1.8.2
Resta de .
Paso 1.9
Simplifica .
Paso 1.9.1
Simplifica cada término.
Paso 1.9.1.1
Aplica la propiedad distributiva.
Paso 1.9.1.2
Multiplica por .
Paso 1.9.1.3
Aplica la propiedad distributiva.
Paso 1.9.1.4
Multiplica por .
Paso 1.9.1.5
Multiplica por .
Paso 1.9.2
Resta de .
Paso 2
Paso 2.1
Resta de ambos lados de la desigualdad.
Paso 2.2
Divide cada término en por y simplifica.
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.1
Cancela el factor común de .
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 2.2.3
Simplifica el lado derecho.
Paso 2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 3
Paso 3.1
Suma a ambos lados de la desigualdad.
Paso 3.2
Divide cada término en por y simplifica.
Paso 3.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.2.2
Simplifica el lado izquierdo.
Paso 3.2.2.1
Cancela el factor común de .
Paso 3.2.2.1.1
Cancela el factor común.
Paso 3.2.2.1.2
Divide por .
Paso 3.2.3
Simplifica el lado derecho.
Paso 3.2.3.1
Mueve el negativo al frente de la fracción.
Paso 4
Obtén la unión de las soluciones.
o
Paso 5