Trigonometrie Beispiele

x 구하기 3 Quadratwurzel von 2sin(x)+2=-1
Schritt 1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Wende die Produktregel auf an.
Schritt 2.2.1.2
Potenziere mit .
Schritt 2.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 2.2.1.4
Vereinfache.
Schritt 2.2.1.5
Wende das Distributivgesetz an.
Schritt 2.2.1.6
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.6.1
Mutltipliziere mit .
Schritt 2.2.1.6.2
Mutltipliziere mit .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Potenziere mit .
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.2
Dividiere durch .
Schritt 3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Berechne .
Schritt 3.5
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 3.6
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Subtrahiere von .
Schritt 3.6.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 3.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.7.2
Ersetze durch in der Formel für die Periode.
Schritt 3.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.7.4
Dividiere durch .
Schritt 3.8
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 3.8.2
Subtrahiere von .
Schritt 3.8.3
Liste die neuen Winkel auf.
Schritt 3.9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 4
Schließe die Lösungen aus, die nicht erfüllen.
Keine Lösung