Trigonometrie Beispiele

x 구하기 30=11(pi/3*(cos(x)+1))+36
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Wende das Distributivgesetz an.
Schritt 2.3
Kombiniere und .
Schritt 2.4
Mutltipliziere mit .
Schritt 3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Subtrahiere von .
Schritt 4
Multipliziere beide Seiten der Gleichung mit .
Schritt 5
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.1.2
Forme den Ausdruck um.
Schritt 5.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.2.1
Faktorisiere aus heraus.
Schritt 5.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.2.3
Forme den Ausdruck um.
Schritt 5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Wende das Distributivgesetz an.
Schritt 5.2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.2.1
Kombiniere und .
Schritt 5.2.1.2.2
Mutltipliziere mit .
Schritt 5.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.3.3
Forme den Ausdruck um.
Schritt 5.2.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.4.1
Faktorisiere aus heraus.
Schritt 5.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.4.3
Forme den Ausdruck um.
Schritt 5.2.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 7
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 8
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.2
Ersetze durch in der Formel für die Periode.
Schritt 8.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.4
Dividiere durch .
Schritt 9
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl