Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Vereinfache .
Schritt 1.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 1.1.3.1
Mutltipliziere mit .
Schritt 1.1.3.2
Mutltipliziere mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.1.3.4
Mutltipliziere mit .
Schritt 1.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.5
Vereinfache den Zähler.
Schritt 1.1.5.1
Bringe auf die linke Seite von .
Schritt 1.1.5.2
Wende das Distributivgesetz an.
Schritt 1.1.5.3
Mutltipliziere mit .
Schritt 1.1.5.4
Wende das Distributivgesetz an.
Schritt 1.1.5.5
Mutltipliziere mit .
Schritt 1.1.5.6
Mutltipliziere mit .
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache die linke Seite.
Schritt 1.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.1.1.2
Forme den Ausdruck um.
Schritt 1.3.2
Vereinfache die rechte Seite.
Schritt 1.3.2.1
Mutltipliziere mit .
Schritt 1.4
Löse nach auf.
Schritt 1.4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 1.4.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.4.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.4.1.3
Addiere und .
Schritt 1.4.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.4.2.1
Teile jeden Ausdruck in durch .
Schritt 1.4.2.2
Vereinfache die linke Seite.
Schritt 1.4.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.2
Dividiere durch .
Schritt 1.4.2.3
Vereinfache die rechte Seite.
Schritt 1.4.2.3.1
Vereinfache jeden Term.
Schritt 1.4.2.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.4.2.3.1.2
Dividiere durch .
Schritt 1.5
Stelle die Terme um.
Schritt 2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 3
Da der Wert von positiv ist, ist die Parabel nach oben geöffnet.
Öffnet nach Oben
Schritt 4
Ermittle den Scheitelpunkt .
Schritt 5
Schritt 5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 5.2
Setze den Wert von in die Formel ein.
Schritt 5.3
Vereinfache.
Schritt 5.3.1
Kombiniere und .
Schritt 5.3.2
Vereinfache den Ausdruck.
Schritt 5.3.2.1
Mutltipliziere mit .
Schritt 5.3.2.2
Dividiere durch .
Schritt 6
Schritt 6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 8
Schritt 8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 10