Elementarmathematik Beispiele

Ermittle die Gleichung mit reellen Koeffizienten 4cos(2x)^2-2=0 , x=pi/8
,
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.3
Forme den Ausdruck um.
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Jede Wurzel von ist .
Schritt 4.3
Mutltipliziere mit .
Schritt 4.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Mutltipliziere mit .
Schritt 4.4.2
Potenziere mit .
Schritt 4.4.3
Potenziere mit .
Schritt 4.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.4.5
Addiere und .
Schritt 4.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.6.1
Benutze , um als neu zu schreiben.
Schritt 4.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.4.6.3
Kombiniere und .
Schritt 4.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.6.4.2
Forme den Ausdruck um.
Schritt 4.4.6.5
Berechne den Exponenten.
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 7
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 7.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Der genau Wert von ist .
Schritt 7.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Teile jeden Ausdruck in durch .
Schritt 7.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.1.2
Dividiere durch .
Schritt 7.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.3.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.2.1
Mutltipliziere mit .
Schritt 7.3.3.2.2
Mutltipliziere mit .
Schritt 7.4
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 7.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.5.1.2
Kombiniere und .
Schritt 7.5.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.5.1.4
Mutltipliziere mit .
Schritt 7.5.1.5
Subtrahiere von .
Schritt 7.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1
Teile jeden Ausdruck in durch .
Schritt 7.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.5.2.2.1.2
Dividiere durch .
Schritt 7.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.5.2.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.3.2.1
Mutltipliziere mit .
Schritt 7.5.2.3.2.2
Mutltipliziere mit .
Schritt 7.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 7.6.2
Ersetze durch in der Formel für die Periode.
Schritt 7.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 7.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 7.6.4.2
Dividiere durch .
Schritt 7.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
Schritt 8
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 8.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Der genau Wert von ist .
Schritt 8.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Teile jeden Ausdruck in durch .
Schritt 8.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.2.1.2
Dividiere durch .
Schritt 8.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.3.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.2.1
Mutltipliziere mit .
Schritt 8.3.3.2.2
Mutltipliziere mit .
Schritt 8.4
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 8.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 8.5.1.2
Kombiniere und .
Schritt 8.5.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 8.5.1.4
Mutltipliziere mit .
Schritt 8.5.1.5
Subtrahiere von .
Schritt 8.5.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.1
Teile jeden Ausdruck in durch .
Schritt 8.5.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.5.2.2.1.2
Dividiere durch .
Schritt 8.5.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.3.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 8.5.2.3.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.5.2.3.2.1
Mutltipliziere mit .
Schritt 8.5.2.3.2.2
Mutltipliziere mit .
Schritt 8.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 8.6.2
Ersetze durch in der Formel für die Periode.
Schritt 8.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 8.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.6.4.2
Dividiere durch .
Schritt 8.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
Schritt 9
Liste alle Lösungen auf.
Schritt 10
Fasse die Ergebnisse zusammen.
Schritt 11
Da die Wurzeln einer Gleichung die Punkte sind, wo die Lösung gleich ist, mache jede Wurzel zu einem Faktor der Gleichung, der gleich ist.
Schritt 12
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Multipliziere aus durch Multiplizieren jedes Terms des ersten Ausdrucks mit jedem Term des zweiten Ausdrucks.
Schritt 12.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.1
Mutltipliziere mit .
Schritt 12.2.1.2
Kombiniere und .
Schritt 12.2.1.3
Kombiniere und .
Schritt 12.2.1.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.4.1
Mutltipliziere mit .
Schritt 12.2.1.4.2
Mutltipliziere mit .
Schritt 12.2.1.4.3
Mutltipliziere mit .
Schritt 12.2.1.4.4
Potenziere mit .
Schritt 12.2.1.4.5
Potenziere mit .
Schritt 12.2.1.4.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 12.2.1.4.7
Addiere und .
Schritt 12.2.1.4.8
Mutltipliziere mit .
Schritt 12.2.1.5
Kombiniere und .
Schritt 12.2.1.6
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1.6.1
Mutltipliziere mit .
Schritt 12.2.1.6.2
Mutltipliziere mit .
Schritt 12.2.1.6.3
Mutltipliziere mit .
Schritt 12.2.1.6.4
Potenziere mit .
Schritt 12.2.1.6.5
Potenziere mit .
Schritt 12.2.1.6.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 12.2.1.6.7
Addiere und .
Schritt 12.2.1.6.8
Mutltipliziere mit .
Schritt 12.2.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.2.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 12.2.2.2
Subtrahiere von .
Schritt 12.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1.1
Faktorisiere aus heraus.
Schritt 12.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 12.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 12.2.3.1.2.3
Forme den Ausdruck um.
Schritt 12.2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 12.2.3.3
Ziehe das Minuszeichen vor den Bruch.