Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 2
Schritt 2.1
Berechne .
Schritt 3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 4
Schritt 4.1
Entferne die Klammern.
Schritt 4.2
Entferne die Klammern.
Schritt 4.3
Subtrahiere von .
Schritt 5
Schritt 5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2
Ersetze durch in der Formel für die Periode.
Schritt 5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.4
Dividiere durch .
Schritt 6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
Schritt 7
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 8
Schritt 8.1
Berechne .
Schritt 9
Die Cosinus-Funktion ist im zweiten und dritten Quadranten negativ. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im dritten Quadranten zu finden.
Schritt 10
Schritt 10.1
Entferne die Klammern.
Schritt 10.2
Vereinfache .
Schritt 10.2.1
Mutltipliziere mit .
Schritt 10.2.2
Subtrahiere von .
Schritt 11
Schritt 11.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 11.2
Ersetze durch in der Formel für die Periode.
Schritt 11.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 11.4
Dividiere durch .
Schritt 12
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
Schritt 13
Da die Wurzeln einer Gleichung die Punkte sind, wo die Lösung gleich ist, mache jede Wurzel zu einem Faktor der Gleichung, der gleich ist.