Elementarmathematik Beispiele

Stelle graphisch dar y=|cot(x/4)|
Schritt 1
Bestimme den Scheitelpunkt des Absolutwerts. In diesem Fall ist der Scheitelpunkt für gleich .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Setze das Innere des Absolutwertes gleich , um die -Koordinate des Scheitelpunktes zu bestimmen. In diesem Fall: .
Schritt 1.2
Löse die Gleichung , um die -Koordinate der Absolutwert-Spitze zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende den inversen Kotangens auf beide Seiten der Gleichung an, um aus dem Kotangens herauszuziehen.
Schritt 1.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.2.1
Der genau Wert von ist .
Schritt 1.2.3
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.4
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.1.1.2
Forme den Ausdruck um.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.4.2.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2.1.3
Forme den Ausdruck um.
Schritt 1.2.5
Die Kotangens-Funktion ist im ersten und dritten Quadranten positiv. Um die zweite Lösung zu ermitteln, addiere den Referenzwinkel aus , um die Lösung im vierten Quadranten zu bestimmen.
Schritt 1.2.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.6.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.1.1.2
Forme den Ausdruck um.
Schritt 1.2.6.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.6.2.2.1.2
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1.2.1
Kombiniere und .
Schritt 1.2.6.2.2.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.6.2.2.1.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.6.2.2.1.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.2.1.2.3.3
Forme den Ausdruck um.
Schritt 1.2.6.2.2.1.3
Bringe auf die linke Seite von .
Schritt 1.2.6.2.2.1.4
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1.4.1
Addiere und .
Schritt 1.2.6.2.2.1.4.2
Mutltipliziere mit .
Schritt 1.2.7
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 1.2.7.2
Ersetze durch in der Formel für die Periode.
Schritt 1.2.7.3
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 1.2.7.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.7.5
Bringe auf die linke Seite von .
Schritt 1.2.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 1.2.9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 1.3
Ersetze in dem Ausdruck die Variable durch .
Schritt 1.4
Die Absolutwert-Spitze ist .
Schritt 2
Bestimme den Definitionsbereich von , sodass eine Liste von -Werten ausgewählt werden kann, um eine Liste von Punkten zu erzeugen, die dazu dient, die Betragsfunktion graphisch darzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze das Argument in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
, für jede ganze Zahl
Schritt 2.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.2.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.1.2
Forme den Ausdruck um.
Schritt 2.2.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Entferne die Klammern.
Schritt 2.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Aufzählende bzw. beschreibende Mengenschreibweise:
, für jede ganze Zahl
Aufzählende bzw. beschreibende Mengenschreibweise:
, für jede ganze Zahl
Schritt 3
Der Absolutwert kann mithilfe der Punkte um den Scheitelpunkt graphisch dargestellt werden.
Schritt 4