Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
,
Schritt 1
Der Zwischenwertsatz besagt, dass, wenn eine reellwertige, stetige Funktion im Intervall ist und eine Zahl zwischen und ist, dann ist ein im Intervall enthalten, sodass .
Schritt 2
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Schritt 3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.1.1
Mutltipliziere mit .
Schritt 4.1.1.1
Potenziere mit .
Schritt 4.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.1.2
Addiere und .
Schritt 4.2
Potenziere mit .
Schritt 5
Schritt 5.1
Schreibe die Gleichung als um.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.1.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Dividiere durch .
Schritt 5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5.4
Vereinfache .
Schritt 5.4.1
Schreibe als um.
Schritt 5.4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4.3
Plus oder Minus ist .
Schritt 6
Der Zwischenwertsatz besagt, dass es eine Wurzel im Intervall gibt, weil eine im Intervall stetige Funktion ist.
Die Wurzeln im Intervall befinden sich bei .
Schritt 7