Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.1.3
Ersetze alle durch .
Schritt 3.2
Differenziere.
Schritt 3.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.4
Vereinfache den Ausdruck.
Schritt 3.2.4.1
Addiere und .
Schritt 3.2.4.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache.
Schritt 3.3.1
Wende das Distributivgesetz an.
Schritt 3.3.2
Wende das Distributivgesetz an.
Schritt 3.3.3
Vereine die Terme
Schritt 3.3.3.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.3.1.1
Bewege .
Schritt 3.3.3.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.3.1.3
Addiere und .
Schritt 3.3.3.2
Mutltipliziere mit .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .