Analysis Beispiele

Berechne den Grenzwert Limes von (5x^2+6x)/( Quadratwurzel von 16x^4-5x^2) für x gegen negative infinity
Schritt 1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Schreibe als um.
Schritt 1.3
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4
Wende die Produktregel auf an.
Schritt 1.5
Potenziere mit .
Schritt 2
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 3
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.1.2
Dividiere durch .
Schritt 3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Faktorisiere aus heraus.
Schritt 3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.3
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Teiler von und .
Schritt 3.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.4
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 3.5
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 3.6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 5
Teile den Zähler und Nenner durch die höchste Potenz von im Nenner, was ist.
Schritt 6
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.2
Dividiere durch .
Schritt 6.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.3
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.4
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 6.5
Bringe den Grenzwert unter das Wurzelzeichen.
Schritt 6.6
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.7
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6.8
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 8.2
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Dividiere durch .
Schritt 8.2.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Mutltipliziere mit .
Schritt 8.2.2.2
Addiere und .
Schritt 8.2.3
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.3.1
Mutltipliziere mit .
Schritt 8.2.3.2
Addiere und .
Schritt 8.2.3.3
Schreibe als um.
Schritt 8.2.3.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 8.2.4
Mutltipliziere mit .
Schritt 8.2.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 9
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: