Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3.2
Differenziere.
Schritt 3.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 3.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.6
Vereinfache den Ausdruck.
Schritt 3.2.6.1
Addiere und .
Schritt 3.2.6.2
Mutltipliziere mit .
Schritt 3.3
Potenziere mit .
Schritt 3.4
Potenziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Addiere und .
Schritt 3.7
Subtrahiere von .
Schritt 3.8
Vereinfache.
Schritt 3.8.1
Faktorisiere aus heraus.
Schritt 3.8.2
Schreibe als um.
Schritt 3.8.3
Faktorisiere aus heraus.
Schritt 3.8.4
Schreibe als um.
Schritt 3.8.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .