Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Die Ableitung von nach ist .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Differenziere.
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Bringe auf die linke Seite von .
Schritt 3.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.3.5
Addiere und .
Schritt 3.3.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.7
Vereinfache Terme.
Schritt 3.3.7.1
Kombiniere und .
Schritt 3.3.7.2
Mutltipliziere mit .
Schritt 3.3.7.3
Kürze den gemeinsamen Teiler von und .
Schritt 3.3.7.3.1
Faktorisiere aus heraus.
Schritt 3.3.7.3.2
Kürze die gemeinsamen Faktoren.
Schritt 3.3.7.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.7.3.2.2
Forme den Ausdruck um.
Schritt 3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.3
Ersetze alle durch .
Schritt 3.5
Kombiniere Brüche.
Schritt 3.5.1
Kombiniere und .
Schritt 3.5.2
Mutltipliziere mit .
Schritt 3.5.3
Kombiniere und .
Schritt 3.5.4
Bringe auf die linke Seite von .
Schritt 3.6
Die Ableitung von nach ist .
Schritt 3.7
Kombiniere und .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .