Analysis Beispiele

dy/dx 구하기 e^x+e^y=1
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Differenziere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.1.3
Ersetze alle durch .
Schritt 2.3.2
Schreibe als um.
Schritt 2.4
Stelle die Terme um.
Schritt 3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Stelle die Faktoren in um.
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Teile jeden Ausdruck in durch .
Schritt 5.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2.1.2
Dividiere durch .
Schritt 5.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.1
Faktorisiere aus heraus.
Schritt 5.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1.2.1
Multipliziere mit .
Schritt 5.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.1.2.3
Forme den Ausdruck um.
Schritt 5.3.3.1.2.4
Dividiere durch .
Schritt 6
Ersetze durch .