Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Schreibe als um.
Schritt 2.2.1.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.1.1.2.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.2
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2.3
Wende das Distributivgesetz an.
Schritt 2.2.1.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.1.1.3.1
Vereinfache jeden Term.
Schritt 2.2.1.1.3.1.1
Multipliziere .
Schritt 2.2.1.1.3.1.1.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.3
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.4
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.1.5
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2
Multipliziere .
Schritt 2.2.1.1.3.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.2.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.3
Bringe auf die linke Seite von .
Schritt 2.2.1.1.3.1.4
Multipliziere .
Schritt 2.2.1.1.3.1.4.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.4.2
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.5
Bringe auf die linke Seite von .
Schritt 2.2.1.1.3.1.6
Multipliziere .
Schritt 2.2.1.1.3.1.6.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.1.6.2
Potenziere mit .
Schritt 2.2.1.1.3.1.6.3
Potenziere mit .
Schritt 2.2.1.1.3.1.6.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.1.1.3.1.6.5
Addiere und .
Schritt 2.2.1.1.3.1.6.6
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Subtrahiere von .
Schritt 2.2.1.1.4
Vereinfache jeden Term.
Schritt 2.2.1.1.4.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1.4.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.1.4.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.1.4.1.4
Forme den Ausdruck um.
Schritt 2.2.1.1.4.2
Schreibe als um.
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Kombiniere und .
Schritt 2.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.5
Vereinfache den Zähler.
Schritt 2.2.1.5.1
Mutltipliziere mit .
Schritt 2.2.1.5.2
Subtrahiere von .
Schritt 2.2.1.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.8
Vereinfache Terme.
Schritt 2.2.1.8.1
Kombiniere und .
Schritt 2.2.1.8.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.8.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.9
Bringe auf die linke Seite von .
Schritt 2.2.1.10
Addiere und .
Schritt 2.2.1.11
Vereinfache jeden Term.
Schritt 2.2.1.11.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.11.2
Faktorisiere aus heraus.
Schritt 2.2.1.11.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.11.2.2
Faktorisiere aus heraus.
Schritt 2.2.1.11.2.3
Faktorisiere aus heraus.
Schritt 2.2.1.12
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.13
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 2.2.1.13.1
Mutltipliziere mit .
Schritt 2.2.1.13.2
Mutltipliziere mit .
Schritt 2.2.1.14
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.15
Vereinfache den Zähler.
Schritt 2.2.1.15.1
Faktorisiere aus heraus.
Schritt 2.2.1.15.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.15.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.15.2
Mutltipliziere mit .
Schritt 2.2.1.15.3
Stelle die Terme um.
Schritt 2.2.1.15.4
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 2.2.1.15.4.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2.1.15.4.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Schritt 3.1
Setze den Zähler gleich Null.
Schritt 3.2
Löse die Gleichung nach auf.
Schritt 3.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.2.2
Setze gleich und löse nach auf.
Schritt 3.2.2.1
Setze gleich .
Schritt 3.2.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.3
Setze gleich und löse nach auf.
Schritt 3.2.3.1
Setze gleich .
Schritt 3.2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Ausdruck.
Schritt 4.2.1.2.1
Addiere und .
Schritt 4.2.1.2.2
Dividiere durch .
Schritt 5
Schritt 5.1
Ersetze alle in durch .
Schritt 5.2
Vereinfache die rechte Seite.
Schritt 5.2.1
Vereinfache .
Schritt 5.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.1.2
Vereinfache den Ausdruck.
Schritt 5.2.1.2.1
Subtrahiere von .
Schritt 5.2.1.2.2
Dividiere durch .
Schritt 6
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 8