Analysis Beispiele

미분 구하기 - d/d@VAR f(x)=cos((x^2+1)^2)
Schritt 1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Ersetze alle durch .
Schritt 2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Ersetze alle durch .
Schritt 3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Mutltipliziere mit .
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Addiere und .
Schritt 3.5.2
Bringe auf die linke Seite von .
Schritt 3.5.3
Mutltipliziere mit .
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende das Distributivgesetz an.
Schritt 4.2
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1.1
Potenziere mit .
Schritt 4.2.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.1.2
Addiere und .
Schritt 4.2.2
Mutltipliziere mit .