Analysis Beispiele

Ermittle die Umkehrfunktion 12/(x^2+1)
Schritt 1
Vertausche die Variablen.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe die Gleichung als um.
Schritt 2.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2.2
Entferne die Klammern.
Schritt 2.2.3
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere jeden Term in mit .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2
Forme den Ausdruck um.
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Wende das Distributivgesetz an.
Schritt 2.3.3.2
Mutltipliziere mit .
Schritt 2.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Schreibe die Gleichung als um.
Schritt 2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.1
Teile jeden Ausdruck in durch .
Schritt 2.4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.3.2.1.2
Dividiere durch .
Schritt 2.4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.3.3.1.2
Dividiere durch .
Schritt 2.4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2.4.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4.5.2
Kombiniere und .
Schritt 2.4.5.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.4.5.4
Schreibe als um.
Schritt 2.4.5.5
Mutltipliziere mit .
Schritt 2.4.5.6
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.6.1
Mutltipliziere mit .
Schritt 2.4.5.6.2
Potenziere mit .
Schritt 2.4.5.6.3
Potenziere mit .
Schritt 2.4.5.6.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.5.6.5
Addiere und .
Schritt 2.4.5.6.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.6.6.1
Benutze , um als neu zu schreiben.
Schritt 2.4.5.6.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.5.6.6.3
Kombiniere und .
Schritt 2.4.5.6.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.5.6.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.5.6.6.4.2
Forme den Ausdruck um.
Schritt 2.4.5.6.6.5
Vereinfache.
Schritt 2.4.5.7
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 2.4.5.8
Stelle die Faktoren in um.
Schritt 2.4.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.4.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.4.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3
Replace with to show the final answer.
Schritt 4
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Der Definitionsbereich der Inversen (Umkehrfunktion) ist der Wertebereich der ursprünglichen Funktion und umgekehrt. Finde den Definitionsbereich und den Wertebereich von und und vergleiche sie.
Schritt 4.2
Finde den Wertebereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Schritt 4.3
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.3.2.2
Setze gleich .
Schritt 4.3.2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.1
Setze gleich .
Schritt 4.3.2.3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.3.2.3.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4.3.2.3.2.2.2.2
Dividiere durch .
Schritt 4.3.2.3.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.3.2.2.3.1
Dividiere durch .
Schritt 4.3.2.4
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4.3.2.5
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 4.3.2.6
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.6.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.6.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.3.2.6.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.3.2.6.1.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 4.3.2.6.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.6.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.3.2.6.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.3.2.6.2.3
Die linke Seite ist größer als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 4.3.2.6.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.6.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 4.3.2.6.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 4.3.2.6.3.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 4.3.2.6.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 4.3.2.7
Die Lösung besteht aus allen wahren Intervallen.
Schritt 4.3.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.3.4
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4.4
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 4.4.2.3
Schreibe als um.
Schritt 4.4.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 4.4.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 4.4.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4.4.3
Der Definitionsbereich umfasst alle reellen Zahlen.
Schritt 4.5
Da der Definitionsbereich von der Wertebereich von ist und der Wertebereich von der Definitionsbereich von ist, ist die inverse Funktion von .
Schritt 5