Analysis Beispiele

Ermittle die kritischen Punkte 1+1/x+1/(x^2)
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Schreibe als um.
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Schreibe als um.
Schritt 1.1.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.2.3
Ersetze alle durch .
Schritt 1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.4
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.1.3.4.2
Mutltipliziere mit .
Schritt 1.1.3.5
Mutltipliziere mit .
Schritt 1.1.3.6
Potenziere mit .
Schritt 1.1.3.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.3.8
Subtrahiere von .
Schritt 1.1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.1.4.3
Vereine die Terme
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.3.1
Subtrahiere von .
Schritt 1.1.4.3.2
Kombiniere und .
Schritt 1.1.4.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Schritt 2.2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.2.6
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 2.2.7
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 2.2.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.2.9
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.9.1
Mutltipliziere mit .
Schritt 2.2.9.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.9.2.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.9.2.1.1
Potenziere mit .
Schritt 2.2.9.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.9.2.2
Addiere und .
Schritt 2.3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Multipliziere jeden Term in mit .
Schritt 2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.2.1.1.2
Faktorisiere aus heraus.
Schritt 2.3.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.1.4
Forme den Ausdruck um.
Schritt 2.3.2.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.1.2.3
Forme den Ausdruck um.
Schritt 2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Teile jeden Ausdruck in durch .
Schritt 2.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.4.2.2.2
Dividiere durch .
Schritt 2.4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.3.1
Dividiere durch .
Schritt 3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Schreibe als um.
Schritt 3.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 3.2.2.3
Plus oder Minus ist .
Schritt 3.3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 3.4.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Schreibe als um.
Schritt 3.4.2.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Ermittle den gemeinsamen Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Potenziere mit .
Schritt 4.1.2.1.2
Schreibe als einen Bruch mit dem Nenner .
Schritt 4.1.2.1.3
Mutltipliziere mit .
Schritt 4.1.2.1.4
Mutltipliziere mit .
Schritt 4.1.2.1.5
Mutltipliziere mit .
Schritt 4.1.2.1.6
Mutltipliziere mit .
Schritt 4.1.2.1.7
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.1.2.3
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.3.1
Subtrahiere von .
Schritt 4.1.2.3.2
Addiere und .
Schritt 4.2
Berechne bei .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.2.2.2
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Undefiniert
Schritt 4.3
Liste all Punkte auf.
Schritt 5