Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Limes von (x^6)/( natürlicher Logarithmus von x) für x gegen infinity
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.
Schritt 1.3
Da der Logarithmus gegen unendlich geht, geht der Wert gegen .
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Vereinige Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Potenziere mit .
Schritt 5.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.3
Addiere und .
Schritt 6
Der Grenzwert im Unendlichen eines Polynoms, dessen Leitkoeffizient positiv ist, ist unendlich.