Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Die Ableitung von nach ist .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Stelle die Terme um.
Schritt 2.4.2
Faktorisiere aus heraus.
Schritt 2.4.2.1
Faktorisiere aus heraus.
Schritt 2.4.2.2
Faktorisiere aus heraus.
Schritt 2.4.2.3
Faktorisiere aus heraus.
Schritt 2.4.3
Stelle und um.
Schritt 2.4.4
Schreibe als um.
Schritt 2.4.5
Faktorisiere aus heraus.
Schritt 2.4.6
Faktorisiere aus heraus.
Schritt 2.4.7
Schreibe als um.
Schritt 2.4.8
Wende den trigonometrischen Pythagoras an.
Schritt 2.4.9
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.4.9.1
Bewege .
Schritt 2.4.9.2
Mutltipliziere mit .
Schritt 2.4.9.2.1
Potenziere mit .
Schritt 2.4.9.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.9.3
Addiere und .
Schritt 2.4.10
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Mutltipliziere mit .
Schritt 3.4
Die Ableitung von nach ist .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Schritt 5.3.1
Dividiere durch .
Schritt 6
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 7
Schritt 7.1
Schreibe als um.
Schritt 7.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 8
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 9
Schritt 9.1
Der genau Wert von ist .
Schritt 10
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 11
Subtrahiere von .
Schritt 12
Die Lösung der Gleichung .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Schritt 14.1
Der genau Wert von ist .
Schritt 14.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 14.3
Mutltipliziere mit .
Schritt 14.4
Der genau Wert von ist .
Schritt 14.5
Mutltipliziere mit .
Schritt 15
Schritt 15.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 15.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2.2
Vereinfache das Ergebnis.
Schritt 15.2.2.1
Berechne .
Schritt 15.2.2.2
Potenziere mit .
Schritt 15.2.2.3
Mutltipliziere mit .
Schritt 15.2.2.4
Die endgültige Lösung ist .
Schritt 15.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.3.2
Vereinfache das Ergebnis.
Schritt 15.3.2.1
Berechne .
Schritt 15.3.2.2
Potenziere mit .
Schritt 15.3.2.3
Mutltipliziere mit .
Schritt 15.3.2.4
Die endgültige Lösung ist .
Schritt 15.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Schritt 15.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.4.2
Vereinfache das Ergebnis.
Schritt 15.4.2.1
Berechne .
Schritt 15.4.2.2
Potenziere mit .
Schritt 15.4.2.3
Mutltipliziere mit .
Schritt 15.4.2.4
Die endgültige Lösung ist .
Schritt 15.5
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
Schritt 15.6
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
Schritt 15.7
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 16