Analysis Beispiele

Finde die lokalen Maxima und Minima 3cos(x)-cos(x)^3
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Die Ableitung von nach ist .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.3
Ersetze alle durch .
Schritt 2.3.3
Die Ableitung von nach ist .
Schritt 2.3.4
Mutltipliziere mit .
Schritt 2.3.5
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Stelle die Terme um.
Schritt 2.4.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.2.1
Faktorisiere aus heraus.
Schritt 2.4.2.2
Faktorisiere aus heraus.
Schritt 2.4.2.3
Faktorisiere aus heraus.
Schritt 2.4.3
Stelle und um.
Schritt 2.4.4
Schreibe als um.
Schritt 2.4.5
Faktorisiere aus heraus.
Schritt 2.4.6
Faktorisiere aus heraus.
Schritt 2.4.7
Schreibe als um.
Schritt 2.4.8
Wende den trigonometrischen Pythagoras an.
Schritt 2.4.9
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.9.1
Bewege .
Schritt 2.4.9.2
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.9.2.1
Potenziere mit .
Schritt 2.4.9.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.9.3
Addiere und .
Schritt 2.4.10
Mutltipliziere mit .
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.3
Ersetze alle durch .
Schritt 3.3
Mutltipliziere mit .
Schritt 3.4
Die Ableitung von nach ist .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch .
Schritt 5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.2
Dividiere durch .
Schritt 5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Dividiere durch .
Schritt 6
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 7
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Schreibe als um.
Schritt 7.2
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 8
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 9
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Der genau Wert von ist .
Schritt 10
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 11
Subtrahiere von .
Schritt 12
Die Lösung der Gleichung .
Schritt 13
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 14
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Der genau Wert von ist .
Schritt 14.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 14.3
Mutltipliziere mit .
Schritt 14.4
Der genau Wert von ist .
Schritt 14.5
Mutltipliziere mit .
Schritt 15
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 15.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.2.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.2.1
Berechne .
Schritt 15.2.2.2
Potenziere mit .
Schritt 15.2.2.3
Mutltipliziere mit .
Schritt 15.2.2.4
Die endgültige Lösung ist .
Schritt 15.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.3.2.1
Berechne .
Schritt 15.3.2.2
Potenziere mit .
Schritt 15.3.2.3
Mutltipliziere mit .
Schritt 15.3.2.4
Die endgültige Lösung ist .
Schritt 15.4
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 15.4.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.4.2.1
Berechne .
Schritt 15.4.2.2
Potenziere mit .
Schritt 15.4.2.3
Mutltipliziere mit .
Schritt 15.4.2.4
Die endgültige Lösung ist .
Schritt 15.5
Da die erste Ableitung um herum das Vorzeichen von positiv zu negativ gewechselt hat, ist ein lokales Maximum.
ist ein lokales Maximum
Schritt 15.6
Da die erste Ableitung um herum das Vorzeichen von negativ zu positiv gewechselt hat, ist ein lokales Minimum.
ist ein lokales Minimum
Schritt 15.7
Dies sind die lokalen Extrema für .
ist ein lokales Maximum
ist ein lokales Minimum
ist ein lokales Maximum
ist ein lokales Minimum
Schritt 16