Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Schritt 2.1
Bestimme die erste Ableitung.
Schritt 2.1.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.1.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Ersetze alle durch .
Schritt 2.1.3
Mutltipliziere mit .
Schritt 2.1.4
Die Ableitung von nach ist .
Schritt 2.1.5
Mutltipliziere mit .
Schritt 2.1.6
Vereinfache.
Schritt 2.1.6.1
Stelle und um.
Schritt 2.1.6.2
Stelle und um.
Schritt 2.1.6.3
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 2.2
Die erste Ableitung von nach ist .
Schritt 3
Schritt 3.1
Setze die erste Ableitung gleich .
Schritt 3.2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Der genau Wert von ist .
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Dividiere durch .
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Dividiere durch .
Schritt 3.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 3.6
Löse nach auf.
Schritt 3.6.1
Vereinfache.
Schritt 3.6.1.1
Mutltipliziere mit .
Schritt 3.6.1.2
Addiere und .
Schritt 3.6.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.6.2.1
Teile jeden Ausdruck in durch .
Schritt 3.6.2.2
Vereinfache die linke Seite.
Schritt 3.6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.2.1.2
Dividiere durch .
Schritt 3.7
Ermittele die Periode von .
Schritt 3.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.7.2
Ersetze durch in der Formel für die Periode.
Schritt 3.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.7.4
Kürze den gemeinsamen Faktor von .
Schritt 3.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.4.2
Dividiere durch .
Schritt 3.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
Schritt 3.9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 4
Die Werte, die die Ableitung gleich machen, sind .
Schritt 5
Nach dem Auffinden des Punktes, der die Ableitung gleich oder undefiniert macht, ist das Intervall, in dem geprüft werden muss, wo ansteigt und abfällt, gleich .
Schritt 6
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Schritt 6.2.1
Wende das Distributivgesetz an.
Schritt 6.2.2
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.2
Forme den Ausdruck um.
Schritt 6.2.3
Mutltipliziere mit .
Schritt 6.2.4
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 7
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Schritt 7.2.1
Wende das Distributivgesetz an.
Schritt 7.2.2
Kürze den gemeinsamen Faktor von .
Schritt 7.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.2.2.2
Forme den Ausdruck um.
Schritt 7.2.3
Mutltipliziere mit .
Schritt 7.2.4
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 8
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 9