Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Berechne den Grenzwert.
Schritt 1.2.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.2.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Schritt 1.2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1.1
Faktorisiere aus heraus.
Schritt 1.2.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.1.3
Forme den Ausdruck um.
Schritt 1.2.3.2
Subtrahiere von .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Berechne den Grenzwert.
Schritt 1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.3.1.2
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Schritt 1.3.3.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3.3.2
Kombiniere und .
Schritt 1.3.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3.4
Vereinfache den Zähler.
Schritt 1.3.3.4.1
Mutltipliziere mit .
Schritt 1.3.3.4.2
Subtrahiere von .
Schritt 1.3.3.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.3.3.6
Der genau Wert von ist .
Schritt 1.3.3.7
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.3
Berechne .
Schritt 3.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3.3
Mutltipliziere mit .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.5
Addiere und .
Schritt 3.6
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.6.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.6.2
Die Ableitung von nach ist .
Schritt 3.6.3
Ersetze alle durch .
Schritt 3.7
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.8
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.9
Addiere und .
Schritt 3.10
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.11
Mutltipliziere mit .
Schritt 3.12
Mutltipliziere mit .
Schritt 3.13
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.14
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 4.2
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.3
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 4.4
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 4.5
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 4.6
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 5
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 6
Schritt 6.1
Wandle von nach um.
Schritt 6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.3
Kombiniere und .
Schritt 6.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.5
Vereinfache den Zähler.
Schritt 6.5.1
Mutltipliziere mit .
Schritt 6.5.2
Subtrahiere von .
Schritt 6.6
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Kosekans im vierten Quadranten negativ ist.
Schritt 6.7
Der genau Wert von ist .
Schritt 6.8
Multipliziere .
Schritt 6.8.1
Mutltipliziere mit .
Schritt 6.8.2
Mutltipliziere mit .