Analysis Beispiele

Bestimme den Durchschnittswert der Funktion f(t)=te^(-t^2) , [0,7]
,
Schritt 1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 2
ist stetig im Intervall .
ist stetig
Schritt 3
Der Durchschnittswert der Funktion im Intervall ist definiert als .
Schritt 4
Setze die tatsächlichen Werte in die Formel für den Durchschnittswert einer Funktion ein.
Schritt 5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Differenziere .
Schritt 5.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.2
Setze die untere Grenze für in ein.
Schritt 5.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.3.2
Mutltipliziere mit .
Schritt 5.4
Setze die obere Grenze für in ein.
Schritt 5.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Potenziere mit .
Schritt 5.5.2
Mutltipliziere mit .
Schritt 5.6
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 5.7
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2
Kombiniere und .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9
Das Integral von nach ist .
Schritt 10
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Berechne bei und .
Schritt 10.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Alles, was mit potenziert wird, ist .
Schritt 10.2.2
Mutltipliziere mit .
Schritt 11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 11.2
Wende das Distributivgesetz an.
Schritt 11.3
Mutltipliziere mit .
Schritt 11.4
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Mutltipliziere mit .
Schritt 11.4.2
Mutltipliziere mit .
Schritt 11.5
Bringe auf die linke Seite von .
Schritt 12
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Mutltipliziere mit .
Schritt 12.2
Addiere und .
Schritt 13
Wende das Distributivgesetz an.
Schritt 14
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Mutltipliziere mit .
Schritt 14.2
Mutltipliziere mit .
Schritt 15
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Mutltipliziere mit .
Schritt 15.2
Mutltipliziere mit .
Schritt 16