Analysis Beispiele

Ermittle die Wendepunkte y=e^(-2x^2)
Schritt 1
Schreibe als Funktion.
Schritt 2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.1.3
Ersetze alle durch .
Schritt 2.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.1.2.3
Mutltipliziere mit .
Schritt 2.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Stelle die Faktoren von um.
Schritt 2.1.3.2
Stelle die Faktoren in um.
Schritt 2.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Mutltipliziere mit .
Schritt 2.2.5
Potenziere mit .
Schritt 2.2.6
Potenziere mit .
Schritt 2.2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.1
Addiere und .
Schritt 2.2.8.2
Bringe auf die linke Seite von .
Schritt 2.2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.11.1
Wende das Distributivgesetz an.
Schritt 2.2.11.2
Mutltipliziere mit .
Schritt 2.2.11.3
Stelle die Terme um.
Schritt 2.2.11.4
Stelle die Faktoren in um.
Schritt 2.3
Die zweite Ableitung von nach ist .
Schritt 3
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze die zweite Ableitung gleich .
Schritt 3.2
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.2
Faktorisiere aus heraus.
Schritt 3.2.1.3
Faktorisiere aus heraus.
Schritt 3.2.2
Schreibe als um.
Schritt 3.2.3
Schreibe als um.
Schritt 3.2.4
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 3.2.4.2
Entferne unnötige Klammern.
Schritt 3.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Setze gleich .
Schritt 3.4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 3.4.2.2
Die Gleichung kann nicht gelöst werden, da nicht definiert ist.
Undefiniert
Schritt 3.4.2.3
Es gibt keine Lösung für
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 3.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Setze gleich .
Schritt 3.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.5.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.2.2.2.1.2
Dividiere durch .
Schritt 3.5.2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Setze gleich .
Schritt 3.6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.6.2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.6.2.2.2.1.2
Dividiere durch .
Schritt 3.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Bestimme die Punkte, an denen die zweite Ableitung gleich ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.1.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.1.1
Wende die Produktregel auf an.
Schritt 4.1.2.1.2
Wende die Produktregel auf an.
Schritt 4.1.2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.2.1
Potenziere mit .
Schritt 4.1.2.2.2
Mutltipliziere mit .
Schritt 4.1.2.2.3
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.2.4
Potenziere mit .
Schritt 4.1.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.2.3.1
Faktorisiere aus heraus.
Schritt 4.1.2.3.2
Faktorisiere aus heraus.
Schritt 4.1.2.3.3
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.3.4
Forme den Ausdruck um.
Schritt 4.1.2.4
Schreibe als um.
Schritt 4.1.2.5
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.2.6
Die endgültige Lösung ist .
Schritt 4.2
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.3
Ersetze in , um den Wert von zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.3.2.1.3
Potenziere mit .
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.2.1
Faktorisiere aus heraus.
Schritt 4.3.2.2.2
Faktorisiere aus heraus.
Schritt 4.3.2.2.3
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.2.4
Forme den Ausdruck um.
Schritt 4.3.2.3
Schreibe als um.
Schritt 4.3.2.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.3.2.5
Die endgültige Lösung ist .
Schritt 4.4
Der Punkt, der durch Einsetzen von in ermittelt werden kann, ist . Dieser Punkt kann ein Wendepunkt sein.
Schritt 4.5
Bestimme die Punkte, die Wendepunkte sein könnten.
Schritt 5
Teile in Intervalle um die Punkte herum, die potentiell Wendepunkte sein könnten.
Schritt 6
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.1.5
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.2.1.6
Kombiniere und .
Schritt 6.2.1.7
Ersetze durch eine Näherung.
Schritt 6.2.1.8
Potenziere mit .
Schritt 6.2.1.9
Dividiere durch .
Schritt 6.2.1.10
Potenziere mit .
Schritt 6.2.1.11
Mutltipliziere mit .
Schritt 6.2.1.12
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.2.1.13
Kombiniere und .
Schritt 6.2.1.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.2
Subtrahiere von .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.1.4
Mutltipliziere mit .
Schritt 7.2.1.5
Alles, was mit potenziert wird, ist .
Schritt 7.2.1.6
Mutltipliziere mit .
Schritt 7.2.1.7
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.2.1.8
Mutltipliziere mit .
Schritt 7.2.1.9
Alles, was mit potenziert wird, ist .
Schritt 7.2.1.10
Mutltipliziere mit .
Schritt 7.2.2
Subtrahiere von .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei , die zweite Ableitung ist . Da diese negativ ist, fällt die zweite Ableitung im Intervall
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die zweite Ableitung ein, um festzustellen, ob sie ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.1.5
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 8.2.1.6
Kombiniere und .
Schritt 8.2.1.7
Ersetze durch eine Näherung.
Schritt 8.2.1.8
Potenziere mit .
Schritt 8.2.1.9
Dividiere durch .
Schritt 8.2.1.10
Potenziere mit .
Schritt 8.2.1.11
Mutltipliziere mit .
Schritt 8.2.1.12
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 8.2.1.13
Kombiniere und .
Schritt 8.2.1.14
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.2.2
Subtrahiere von .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die zweite Ableitung . Da dies positiv ist, steigt die zweite Ableitung auf dem Intervall .
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Schritt 10