Analysis Beispiele

Finde die lokalen Maxima und Minima Kubikwurzel aus x
Schritt 1
Schreibe als Funktion.
Schritt 2
Ermittle die erste Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Benutze , um als neu zu schreiben.
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.4
Kombiniere und .
Schritt 2.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.6.1
Mutltipliziere mit .
Schritt 2.6.2
Subtrahiere von .
Schritt 2.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.8.2
Mutltipliziere mit .
Schritt 3
Ermittle die zweite Ableitung der Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Schreibe als um.
Schritt 3.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.2.1
Kombiniere und .
Schritt 3.2.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.5
Kombiniere und .
Schritt 3.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.7
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Mutltipliziere mit .
Schritt 3.7.2
Subtrahiere von .
Schritt 3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.9
Kombiniere und .
Schritt 3.10
Mutltipliziere mit .
Schritt 3.11
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.11.1
Mutltipliziere mit .
Schritt 3.11.2
Bringe auf die linke Seite von .
Schritt 3.11.3
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 4
Um die lokalen Maximum- und Minimumwerte einer Funktion zu ermitteln, setze die Ableitung gleich und löse die Gleichung.
Schritt 5
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Benutze , um als neu zu schreiben.
Schritt 5.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 5.1.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.1.4
Kombiniere und .
Schritt 5.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.1.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.6.1
Mutltipliziere mit .
Schritt 5.1.6.2
Subtrahiere von .
Schritt 5.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.1.8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.8.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 5.1.8.2
Mutltipliziere mit .
Schritt 5.2
Die erste Ableitung von nach ist .
Schritt 6
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze die erste Ableitung gleich .
Schritt 6.2
Setze den Zähler gleich Null.
Schritt 6.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 7
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 7.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 7.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 7.3.2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.1
Benutze , um als neu zu schreiben.
Schritt 7.3.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1.1
Wende die Produktregel auf an.
Schritt 7.3.2.2.1.2
Potenziere mit .
Schritt 7.3.2.2.1.3
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 7.3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.2.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.2.1.3.2.2
Forme den Ausdruck um.
Schritt 7.3.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 7.3.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.1
Teile jeden Ausdruck in durch .
Schritt 7.3.3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.3.3.1.2.1.2
Dividiere durch .
Schritt 7.3.3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.1.3.1
Dividiere durch .
Schritt 7.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 7.3.3.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.3.3.1
Schreibe als um.
Schritt 7.3.3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 7.3.3.3.3
Plus oder Minus ist .
Schritt 8
Kritische Punkte zum auswerten.
Schritt 9
Berechne die zweite Ableitung an der Stelle . Wenn die zweite Ableitung positiv ist, dann ist dies ein lokales Minimum. Wenn sie negativ ist, dann ist dies ein lokales Maximum.
Schritt 10
Berechne die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1.1
Schreibe als um.
Schritt 10.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 10.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2
Forme den Ausdruck um.
Schritt 10.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 10.3.2
Mutltipliziere mit .
Schritt 10.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 10.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Undefiniert
Schritt 11
Da es mindestens einen Punkt mit oder eine nicht definierte zweite Ableitung gibt, wende den ersten Ableitungstest an.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Teile in separate Intervalle um die -Werte herum auf, die die erste Ableitung zu oder nicht definiert machen.
Schritt 11.2
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.2.2
Die endgültige Lösung ist .
Schritt 11.3
Setze eine beliebige Zahl, wie , aus dem Intervall in die erste Ableitung ein, um zu überprüfen, ob das Ergebnis negativ oder positiv ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 11.3.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.2.1
Entferne die Klammern.
Schritt 11.3.2.2
Die endgültige Lösung ist .
Schritt 11.4
Da die erste Ableitung das Vorzeichen um nicht gewechselt hat, ist dies kein lokales Maximum oder Minimum.
Kein lokales Maximum oder Minimum
Schritt 11.5
Keine lokalen Maxima oder Minima für gefunden.
Keine lokalen Maxima oder Minima
Keine lokalen Maxima oder Minima
Schritt 12