Analysis Beispiele

Bestimme die Konkavität f(x)=x natürlicher Logarithmus von x
Schritt 1
Find the values where the second derivative is equal to .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.1.1.2
Die Ableitung von nach ist .
Schritt 1.1.1.3
Differenziere unter Anwendung der Potenzregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.1
Kombiniere und .
Schritt 1.1.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.3.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.3.2.2
Forme den Ausdruck um.
Schritt 1.1.1.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.4
Mutltipliziere mit .
Schritt 1.1.2
Bestimme die zweite Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.2
Die Ableitung von nach ist .
Schritt 1.1.2.3
Addiere und .
Schritt 1.1.3
Die zweite Ableitung von nach ist .
Schritt 1.2
Setze die zweite Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Setze die zweite Ableitung gleich .
Schritt 1.2.2
Setze den Zähler gleich Null.
Schritt 1.2.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Keine Lösung
Schritt 2
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 2.2
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 3
Erzeuge Intervalle um die -Werte, wo die 2. Ableitung 0 ist oder nicht definiert ist.
Schritt 4
Setze eine beliebige Zahl aus dem Intervall in die zweite Ableitung ein und berechne, um die Konkavität zu bestimmen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 4.2
Die endgültige Lösung ist .
Schritt 4.3
Der Graph ist im Intervall konvex, weil positiv ist.
Konvex im Intervall , da positiv ist
Konvex im Intervall , da positiv ist
Schritt 5