Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.2.3
Schreibe als um.
Schritt 2.2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.5
Mutltipliziere mit .
Schritt 2.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Wende das Distributivgesetz an.
Schritt 2.4.2
Addiere und .
Schritt 3
Schritt 3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.3
Mutltipliziere mit .
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Schritt 5.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.2.1
Teile jeden Ausdruck in durch .
Schritt 5.2.2
Vereinfache die linke Seite.
Schritt 5.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 5.2.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2.2
Dividiere durch .
Schritt 5.2.3
Vereinfache die rechte Seite.
Schritt 5.2.3.1
Vereinfache jeden Term.
Schritt 5.2.3.1.1
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5.2.3.1.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.2.3.1.2.1
Schreibe als um.
Schritt 5.2.3.1.2.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.2.3.1.3
Mutltipliziere mit .
Schritt 5.2.3.1.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Ersetze durch .