Analysis Beispiele

Bestimme den Definitions- und Wertebereich -3x^2+12y^2=84
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Dividiere durch .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Dividiere durch .
Schritt 2.3.1.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Faktorisiere aus heraus.
Schritt 2.3.1.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.1.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2.2.3
Forme den Ausdruck um.
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.2
Kombiniere und .
Schritt 4.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.5.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 4.5.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 4.5.3
Ordne den Bruch um.
Schritt 4.6
Ziehe Terme aus der Wurzel heraus.
Schritt 4.7
Kombiniere und .
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 7.2
Da die linke Seite eine gerade Potenz aufweist, ist sie immer positiv für alle reellen Zahlen.
Alle reellen Zahlen
Alle reellen Zahlen
Schritt 8
Der Definitionsbereich umfasst alle reellen Zahlen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 9
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 10
Bestimme den Definitionsbereich und den Wertebereich.
Definitionsbereich:
Wertebereich:
Schritt 11