Analysis Beispiele

Ermittle die Stammfunktion (x-4) Quadratwurzel von x+4
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Kombiniere und .
Schritt 5.2
Kombiniere und .
Schritt 6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1.1
Differenziere .
Schritt 7.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 7.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 7.1.5
Addiere und .
Schritt 7.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Schreibe als um.
Schritt 9.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 9.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 9.2.3
Kombiniere und .
Schritt 9.2.4
Mutltipliziere mit .
Schritt 9.2.5
Mutltipliziere mit .
Schritt 9.2.6
Mutltipliziere mit .
Schritt 10
Ersetze alle durch .
Schritt 11
Stelle die Terme um.
Schritt 12
Die Lösung ist die Stammfunktion der Funktion .