Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe als Funktion.
Schritt 2
Die Funktion kann bestimmt werden, indem das unbestimmte Integral der Ableitung ermittelt wird.
Schritt 3
Stelle das Integral auf, um zu lösen.
Schritt 4
Schritt 4.1
Benutze , um als neu zu schreiben.
Schritt 4.2
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.1.1
Potenziere mit .
Schritt 4.2.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 4.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.4
Addiere und .
Schritt 4.3
Benutze , um als neu zu schreiben.
Schritt 4.4
Multipliziere mit durch Addieren der Exponenten.
Schritt 4.4.1
Bewege .
Schritt 4.4.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.4.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.4.4
Kombiniere und .
Schritt 4.4.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.4.6
Vereinfache den Zähler.
Schritt 4.4.6.1
Mutltipliziere mit .
Schritt 4.4.6.2
Addiere und .
Schritt 5
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9
Schritt 9.1
Vereinfache.
Schritt 9.2
Vereinfache.
Schritt 9.2.1
Kombiniere und .
Schritt 9.2.2
Mutltipliziere mit .
Schritt 9.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 9.2.3.1
Faktorisiere aus heraus.
Schritt 9.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 9.2.3.2.1
Faktorisiere aus heraus.
Schritt 9.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 9.2.3.2.3
Forme den Ausdruck um.
Schritt 10
Die Lösung ist die Stammfunktion der Funktion .