Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Da für Wurzeln gegen geht, erreicht der Wert .
Schritt 1.3
Da der Exponent gegen geht, nähert sich die Größe an.
Schritt 1.4
Unendlich durch Unendlich geteilt ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Benutze , um als neu zu schreiben.
Schritt 3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.5
Kombiniere und .
Schritt 3.6
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.7
Vereinfache den Zähler.
Schritt 3.7.1
Mutltipliziere mit .
Schritt 3.7.2
Subtrahiere von .
Schritt 3.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.9
Vereinfache.
Schritt 3.9.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 3.9.2
Mutltipliziere mit .
Schritt 3.10
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Schreibe als um.
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 8
Mutltipliziere mit .