Analysis Beispiele

Berechne unter Anwendung der Regel von de l’Hospital Limes von ( natürlicher Logarithmus von x)/(sin(5pix)) für x gegen 1
Schritt 1
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Bringe den Grenzwert in den Logarithmus.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Der natürliche Logarithmus von ist .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.3.1.2
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 1.3.3.3
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest.
Schritt 1.3.3.4
Der genau Wert von ist .
Schritt 1.3.3.5
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Bestimme die Ableitung des Zählers und des Nenners.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Die Ableitung von nach ist .
Schritt 3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.3.2
Die Ableitung von nach ist .
Schritt 3.3.3
Ersetze alle durch .
Schritt 3.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.6
Mutltipliziere mit .
Schritt 3.7
Entferne die Klammern.
Schritt 3.8
Bringe auf die linke Seite von .
Schritt 3.9
Mutltipliziere mit .
Schritt 3.10
Stelle die Faktoren von um.
Schritt 4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 5
Mutltipliziere mit .
Schritt 6
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 7
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 8
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 9
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 10
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 11
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 12
Berechne die Grenzwerte durch Einsetzen von für alle .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 12.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 13
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1.1
Kürze den gemeinsamen Faktor.
Schritt 13.1.2
Forme den Ausdruck um.
Schritt 13.2
Wandle von nach um.
Schritt 13.3
Mutltipliziere mit .
Schritt 13.4
Subtrahiere ganze Umdrehungen von , bis der Winkel größer oder gleich und kleiner als ist.
Schritt 13.5
Wende den Referenzwinkel an, indem du den Winkel mit den entsprechenden trigonometrischen Werten im ersten Quadranten findest. Kehre das Vorzeichen des Ausdrucks um, da der Sekans im zweiten Quadranten negativ ist.
Schritt 13.6
Der genau Wert von ist .
Schritt 13.7
Mutltipliziere mit .
Schritt 13.8
Kombiniere und .
Schritt 13.9
Ziehe das Minuszeichen vor den Bruch.