Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Schritt 1.2
Berechne den Grenzwert des Zählers.
Schritt 1.2.1
Berechne den Grenzwert.
Schritt 1.2.1.1
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Schritt 1.2.1.2
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Schritt 1.2.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.2.3
Vereinfache die Lösung.
Schritt 1.2.3.1
Der genau Wert von ist .
Schritt 1.2.3.2
Mutltipliziere mit .
Schritt 1.3
Berechne den Grenzwert des Nenners.
Schritt 1.3.1
Berechne den Grenzwert.
Schritt 1.3.1.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 1.3.1.2
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Schritt 1.3.1.3
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Schritt 1.3.1.4
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 1.3.2
Berechne den Grenzwert von durch Einsetzen von für .
Schritt 1.3.3
Vereinfache die Lösung.
Schritt 1.3.3.1
Vereinfache jeden Term.
Schritt 1.3.3.1.1
Der genau Wert von ist .
Schritt 1.3.3.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.3.3.1.3
Mutltipliziere mit .
Schritt 1.3.3.2
Subtrahiere von .
Schritt 1.3.3.3
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.3.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 1.4
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Schritt 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Schritt 3
Schritt 3.1
Differenziere den Zähler und Nenner.
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Die Ableitung von nach ist .
Schritt 3.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.5
Berechne .
Schritt 3.5.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 3.5.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 3.5.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.5.1.3
Ersetze alle durch .
Schritt 3.5.2
Die Ableitung von nach ist .
Schritt 3.5.3
Mutltipliziere mit .
Schritt 3.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.7
Addiere und .
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2
Forme den Ausdruck um.
Schritt 5
Da die Funktion von links gegen geht und von rechts gegen geht, existiert der Grenzwert nicht.