Gib eine Aufgabe ein ...
Analysis Beispiele
Step 1
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Berechne den Grenzwert des Zählers.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
Vereinfache jeden Term.
Der genau Wert von ist .
Der genau Wert von ist .
Mutltipliziere mit .
Addiere und .
Berechne den Grenzwert des Nenners.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Der genau Wert von ist .
Mutltipliziere mit .
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Step 2
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Step 3
Differenziere den Zähler und Nenner.
Gemäß der Summenregel ist die Ableitung von nach .
Die Ableitung von nach ist .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Stelle die Terme um.
Step 4
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Berechne den Grenzwert des Zählers.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
Vereinfache jeden Term.
Der genau Wert von ist .
Der genau Wert von ist .
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Subtrahiere von .
Berechne den Grenzwert des Nenners.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
Vereinfache jeden Term.
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Der genau Wert von ist .
Mutltipliziere mit .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Addiere und .
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Bestimme die Ableitung des Zählers und des Nenners.
Differenziere den Zähler und Nenner.
Gemäß der Summenregel ist die Ableitung von nach .
Die Ableitung von nach ist .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Um die Kettenregel anzuwenden, ersetze durch .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Ersetze alle durch .
Die Ableitung von nach ist .
Potenziere mit .
Potenziere mit .
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Mutltipliziere mit .
Stelle die Terme um.
Gemäß der Summenregel ist die Ableitung von nach .
Berechne .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Vereinfache.
Wende das Distributivgesetz an.
Addiere und .
Bewege .
Addiere und .
Stelle die Terme um.
Step 5
Berechne den Grenzwert des Zählers und den Grenzwert des Nenners.
Bilde den Grenzwert für den Zähler und den Grenzwert für den Nenner.
Berechne den Grenzwert des Zählers.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sekans ist stetig.
Bringe den Grenzwert in die trigonometrische Funktion, da der Tangens stetig ist.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
Vereinfache jeden Term.
Der genau Wert von ist .
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Addiere und .
Berechne den Grenzwert des Nenners.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Berechne die Grenzwerte durch Einsetzen von für alle .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Vereinfache die Lösung.
Vereinfache jeden Term.
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Addiere und .
Addiere und .
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Der Ausdruck enthält eine Division durch . Der Ausdruck ist nicht definiert.
Undefiniert
Da unbestimmt ist, wende die Regel von L'Hospital an. Die Regel von L'Hospital besagt, dass der Grenzwert eines Quotienten von Funktionen gleich dem Grenzwert des Quotienten ihrer Ableitungen ist.
Bestimme die Ableitung des Zählers und des Nenners.
Differenziere den Zähler und Nenner.
Gemäß der Summenregel ist die Ableitung von nach .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Um die Kettenregel anzuwenden, ersetze durch .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Ersetze alle durch .
Die Ableitung von nach ist .
Multipliziere mit durch Addieren der Exponenten.
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Potenziere mit .
Potenziere mit .
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Potenziere mit .
Potenziere mit .
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Die Ableitung von nach ist .
Vereinfache.
Wende das Distributivgesetz an.
Mutltipliziere mit .
Stelle die Terme um.
Vereinfache jeden Term.
Schreibe mithilfe von Sinus und Kosinus um.
Wende die Produktregel auf an.
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Kombiniere und .
Ziehe das Minuszeichen vor den Bruch.
Schreibe mithilfe von Sinus und Kosinus um.
Wende die Produktregel auf an.
Multipliziere .
Mutltipliziere mit .
Multipliziere mit durch Addieren der Exponenten.
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Bringe auf die linke Seite von .
Schreibe mithilfe von Sinus und Kosinus um.
Wende die Produktregel auf an.
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Kombiniere und .
Ziehe das Minuszeichen vor den Bruch.
Gemäß der Summenregel ist die Ableitung von nach .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Die Ableitung von nach ist .
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Mutltipliziere mit .
Berechne .
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Die Ableitung von nach ist .
Vereinfache.
Wende das Distributivgesetz an.
Wende das Distributivgesetz an.
Vereine die Terme
Mutltipliziere mit .
Mutltipliziere mit .
Subtrahiere von .
Bewege .
Subtrahiere von .
Addiere und .
Vereine die Terme
Vereinige die Zähler über dem gemeinsamen Nenner.
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Kombiniere und .
Vereinige die Zähler über dem gemeinsamen Nenner.
Step 6
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Zerlege den Grenzwert unter Anwendung der Quotientenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Ziehe den Exponenten von aus dem Grenzwert durch Anwendung der Potenzregel für Grenzwerte.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Zerlege den Grenzwert unter Anwendung der Produktregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Bringe den Grenzwert in die trigonometrische Funktion, da der Sinus stetig ist.
Ziehe den Term aus dem Grenzwert, da er konstant bezüglich ist.
Bringe den Grenzwert in die trigonometrische Funktion, da der Kosinus stetig ist.
Step 7
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Berechne den Grenzwert von durch Einsetzen von für .
Step 8
Vereinfache den Zähler.
Der genau Wert von ist .
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Mutltipliziere mit .
Multipliziere mit durch Addieren der Exponenten.
Bewege .
Mutltipliziere mit .
Potenziere mit .
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Addiere und .
Der genau Wert von ist .
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Mutltipliziere mit .
Subtrahiere von .
Subtrahiere von .
Vereinfache den Nenner.
Der genau Wert von ist .
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Dividiere durch .
Vereinfache den Nenner.
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Der genau Wert von ist .
Mutltipliziere mit .
Addiere und .
Addiere und .
Kürze den gemeinsamen Teiler von und .
Faktorisiere aus heraus.
Kürze die gemeinsamen Faktoren.
Faktorisiere aus heraus.
Kürze den gemeinsamen Faktor.
Forme den Ausdruck um.
Ziehe das Minuszeichen vor den Bruch.