Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Schritt 1.1.2.1
Benutze , um als neu zu schreiben.
Schritt 1.1.2.2
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.2.2.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.2.3
Ersetze alle durch .
Schritt 1.1.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.7
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.1.2.8
Kombiniere und .
Schritt 1.1.2.9
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.2.10
Vereinfache den Zähler.
Schritt 1.1.2.10.1
Mutltipliziere mit .
Schritt 1.1.2.10.2
Subtrahiere von .
Schritt 1.1.2.11
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2.12
Mutltipliziere mit .
Schritt 1.1.2.13
Subtrahiere von .
Schritt 1.1.2.14
Kombiniere und .
Schritt 1.1.2.15
Kombiniere und .
Schritt 1.1.2.16
Kombiniere und .
Schritt 1.1.2.17
Bringe in den Nenner mit Hilfe der Regel des negativen Exponenten .
Schritt 1.1.2.18
Faktorisiere aus heraus.
Schritt 1.1.2.19
Kürze die gemeinsamen Faktoren.
Schritt 1.1.2.19.1
Faktorisiere aus heraus.
Schritt 1.1.2.19.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.19.3
Forme den Ausdruck um.
Schritt 1.1.2.20
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.3
Stelle die Terme um.
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Stelle jede Seite der Gleichung graphisch dar. Die Lösung ist der x-Wert des Schnittpunktes.
Schritt 3
Schritt 3.1
Wende die Regel an, um die Potenz als Wurzel umzuschreiben.
Schritt 3.2
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, erhebe beide Seiten der Gleichung zur dritten Potenz.
Schritt 3.3.2
Vereinfache jede Seite der Gleichung.
Schritt 3.3.2.1
Benutze , um als neu zu schreiben.
Schritt 3.3.2.2
Vereinfache die linke Seite.
Schritt 3.3.2.2.1
Multipliziere die Exponenten in .
Schritt 3.3.2.2.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.3.2.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.3.2.2.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.2.1.2.2
Forme den Ausdruck um.
Schritt 3.3.2.3
Vereinfache die rechte Seite.
Schritt 3.3.2.3.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 3.3.3
Löse nach auf.
Schritt 3.3.3.1
Setze gleich .
Schritt 3.3.3.2
Löse nach auf.
Schritt 3.3.3.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.3.3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.3.3.2.2.2
Vereinfache die linke Seite.
Schritt 3.3.3.2.2.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.3.3.2.2.2.2
Dividiere durch .
Schritt 3.3.3.2.2.3
Vereinfache die rechte Seite.
Schritt 3.3.3.2.2.3.1
Dividiere durch .
Schritt 3.3.3.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.1.3
Subtrahiere von .
Schritt 4.1.2.1.4
Jede Wurzel von ist .
Schritt 4.1.2.2
Addiere und .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Schreibe als um.
Schritt 4.2.2.1.1.1
Benutze , um als neu zu schreiben.
Schritt 4.2.2.1.1.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.2.1.1.3
Kombiniere und .
Schritt 4.2.2.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.1.4.2
Forme den Ausdruck um.
Schritt 4.2.2.1.1.5
Berechne den Exponenten.
Schritt 4.2.2.1.2
Mutltipliziere mit .
Schritt 4.2.2.1.3
Subtrahiere von .
Schritt 4.2.2.1.4
Schreibe als um.
Schritt 4.2.2.1.5
Ziehe Terme von unter der Wurzel heraus unter der Annahme reeller Zahlen.
Schritt 4.2.2.2
Addiere und .
Schritt 4.3
Liste all Punkte auf.
Schritt 5