Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.1.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3
Ersetze alle durch .
Schritt 1.1.2
Differenziere.
Schritt 1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.4
Mutltipliziere mit .
Schritt 1.1.2.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.2.6
Vereinfache den Ausdruck.
Schritt 1.1.2.6.1
Addiere und .
Schritt 1.1.2.6.2
Mutltipliziere mit .
Schritt 1.1.3
Vereinfache.
Schritt 1.1.3.1
Wende das Distributivgesetz an.
Schritt 1.1.3.2
Wende das Distributivgesetz an.
Schritt 1.1.3.3
Vereine die Terme
Schritt 1.1.3.3.1
Mutltipliziere mit .
Schritt 1.1.3.3.2
Potenziere mit .
Schritt 1.1.3.3.3
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.1.3.3.4
Addiere und .
Schritt 1.1.3.3.5
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 2.2.1
Faktorisiere aus heraus.
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Faktorisiere aus heraus.
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Schreibe als um.
Schritt 2.2.4
Faktorisiere.
Schritt 2.2.4.1
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2.2.4.2
Entferne unnötige Klammern.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich .
Schritt 2.5
Setze gleich und löse nach auf.
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Schritt 2.5.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.5.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.5.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.5.2.2.2
Vereinfache die linke Seite.
Schritt 2.5.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.5.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.5.2.2.2.1.2
Dividiere durch .
Schritt 2.5.2.2.3
Vereinfache die rechte Seite.
Schritt 2.5.2.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.6
Setze gleich und löse nach auf.
Schritt 2.6.1
Setze gleich .
Schritt 2.6.2
Löse nach auf.
Schritt 2.6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.6.2.2.2
Vereinfache die linke Seite.
Schritt 2.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.6.2.2.2.1.2
Dividiere durch .
Schritt 2.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Schritt 3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 4
Schritt 4.1
Berechne bei .
Schritt 4.1.1
Ersetze durch .
Schritt 4.1.2
Vereinfache.
Schritt 4.1.2.1
Vereinfache jeden Term.
Schritt 4.1.2.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.1.2.1.2
Mutltipliziere mit .
Schritt 4.1.2.2
Vereinfache den Ausdruck.
Schritt 4.1.2.2.1
Addiere und .
Schritt 4.1.2.2.2
Potenziere mit .
Schritt 4.2
Berechne bei .
Schritt 4.2.1
Ersetze durch .
Schritt 4.2.2
Vereinfache.
Schritt 4.2.2.1
Vereinfache jeden Term.
Schritt 4.2.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 4.2.2.1.1.1
Wende die Produktregel auf an.
Schritt 4.2.2.1.1.2
Wende die Produktregel auf an.
Schritt 4.2.2.1.2
Potenziere mit .
Schritt 4.2.2.1.3
Mutltipliziere mit .
Schritt 4.2.2.1.4
Potenziere mit .
Schritt 4.2.2.1.5
Potenziere mit .
Schritt 4.2.2.1.6
Kürze den gemeinsamen Faktor von .
Schritt 4.2.2.1.6.1
Faktorisiere aus heraus.
Schritt 4.2.2.1.6.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.6.3
Forme den Ausdruck um.
Schritt 4.2.2.1.7
Mutltipliziere mit .
Schritt 4.2.2.2
Vereinfache den Ausdruck.
Schritt 4.2.2.2.1
Addiere und .
Schritt 4.2.2.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.3
Berechne bei .
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache.
Schritt 4.3.2.1
Vereinfache jeden Term.
Schritt 4.3.2.1.1
Wende die Produktregel auf an.
Schritt 4.3.2.1.2
Potenziere mit .
Schritt 4.3.2.1.3
Potenziere mit .
Schritt 4.3.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 4.3.2.1.4.1
Faktorisiere aus heraus.
Schritt 4.3.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.2.1.4.3
Forme den Ausdruck um.
Schritt 4.3.2.1.5
Mutltipliziere mit .
Schritt 4.3.2.2
Vereinfache den Ausdruck.
Schritt 4.3.2.2.1
Addiere und .
Schritt 4.3.2.2.2
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 4.4
Liste all Punkte auf.
Schritt 5