Analysis Beispiele

Ermittle die Umkehrfunktion d(t)=11.6-4t
Schritt 1
Schreibe als Gleichung.
Schritt 2
Vertausche die Variablen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.3.3.1.2
Dividiere durch .
Schritt 4
Replace with to show the final answer.
Schritt 5
Überprüfe, ob die Umkehrfunktion von ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um die inverse Funktion (Umkehrfunktion) zu prüfen, prüfe ob ist und ist.
Schritt 5.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.2.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.2.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1.1
Faktorisiere aus heraus.
Schritt 5.2.3.1.2
Faktorisiere aus heraus.
Schritt 5.2.3.1.3
Faktorisiere aus heraus.
Schritt 5.2.3.2
Faktorisiere aus heraus.
Schritt 5.2.3.3
Separiere Brüche.
Schritt 5.2.3.4
Dividiere durch .
Schritt 5.2.3.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.5.1
Faktorisiere aus heraus.
Schritt 5.2.3.5.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.5.3
Forme den Ausdruck um.
Schritt 5.2.4
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2.5
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Kombiniere und .
Schritt 5.2.5.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.2.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.6.1.1
Stelle und um.
Schritt 5.2.6.1.2
Faktorisiere aus heraus.
Schritt 5.2.6.1.3
Faktorisiere aus heraus.
Schritt 5.2.6.1.4
Faktorisiere aus heraus.
Schritt 5.2.6.2
Wende das Distributivgesetz an.
Schritt 5.2.6.3
Mutltipliziere mit .
Schritt 5.2.6.4
Mutltipliziere mit .
Schritt 5.2.6.5
Mutltipliziere mit .
Schritt 5.2.6.6
Addiere und .
Schritt 5.2.6.7
Addiere und .
Schritt 5.2.6.8
Mutltipliziere mit .
Schritt 5.2.7
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.7.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.7.2
Dividiere durch .
Schritt 5.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Bilde die verkettete Ergebnisfunktion.
Schritt 5.3.2
Berechne durch Einsetzen des Wertes von in .
Schritt 5.3.3
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.1
Wende das Distributivgesetz an.
Schritt 5.3.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 5.3.3.2.2
Faktorisiere aus heraus.
Schritt 5.3.3.2.3
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.2.4
Forme den Ausdruck um.
Schritt 5.3.3.3
Mutltipliziere mit .
Schritt 5.3.3.4
Mutltipliziere mit .
Schritt 5.3.3.5
Mutltipliziere mit .
Schritt 5.3.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.4.1
Subtrahiere von .
Schritt 5.3.4.2
Addiere und .
Schritt 5.4
Da und gleich sind, ist die inverse Funktion (Umkehrfunktion) von .