Analysis Beispiele

Ermitteln, wo ansteigend/abfallend mittels Ableitungen f(x)=x^4-3x^3+5x
Schritt 1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bestimme die erste Ableitung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.2.3
Mutltipliziere mit .
Schritt 1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.3.3
Mutltipliziere mit .
Schritt 1.2
Die erste Ableitung von nach ist .
Schritt 2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Setze die erste Ableitung gleich .
Schritt 2.2
Faktorisiere mithilfe des Satzes über rationale Wurzeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 2.2.2
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 2.2.3
Setze ein und vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Setze in das Polynom ein.
Schritt 2.2.3.2
Potenziere mit .
Schritt 2.2.3.3
Mutltipliziere mit .
Schritt 2.2.3.4
Potenziere mit .
Schritt 2.2.3.5
Mutltipliziere mit .
Schritt 2.2.3.6
Subtrahiere von .
Schritt 2.2.3.7
Addiere und .
Schritt 2.2.4
Da eine bekannte Wurzel ist, dividiere das Polynom durch , um das Quotientenpolynom zu bestimmen. Dieses Polynom kann dann verwendet werden, um die restlichen Wurzeln zu finden.
Schritt 2.2.5
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
--++
Schritt 2.2.5.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
--++
Schritt 2.2.5.3
Multipliziere den neuen Bruchterm mit dem Teiler.
--++
+-
Schritt 2.2.5.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
--++
-+
Schritt 2.2.5.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
--++
-+
-
Schritt 2.2.5.6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
--++
-+
-+
Schritt 2.2.5.7
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
-
--++
-+
-+
Schritt 2.2.5.8
Multipliziere den neuen Bruchterm mit dem Teiler.
-
--++
-+
-+
-+
Schritt 2.2.5.9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
-
--++
-+
-+
+-
Schritt 2.2.5.10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
-
--++
-+
-+
+-
-
Schritt 2.2.5.11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
-
--++
-+
-+
+-
-+
Schritt 2.2.5.12
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
--
--++
-+
-+
+-
-+
Schritt 2.2.5.13
Multipliziere den neuen Bruchterm mit dem Teiler.
--
--++
-+
-+
+-
-+
-+
Schritt 2.2.5.14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
--
--++
-+
-+
+-
-+
+-
Schritt 2.2.5.15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
--
--++
-+
-+
+-
-+
+-
Schritt 2.2.5.16
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 2.2.6
Schreibe als eine Menge von Faktoren.
Schritt 2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Setze gleich .
Schritt 2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.1
Setze gleich .
Schritt 2.5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 2.5.2.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 2.5.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.3.1.1
Potenziere mit .
Schritt 2.5.2.3.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.3.1.2.1
Mutltipliziere mit .
Schritt 2.5.2.3.1.2.2
Mutltipliziere mit .
Schritt 2.5.2.3.1.3
Addiere und .
Schritt 2.5.2.3.2
Mutltipliziere mit .
Schritt 2.5.2.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.4.1.1
Potenziere mit .
Schritt 2.5.2.4.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.4.1.2.1
Mutltipliziere mit .
Schritt 2.5.2.4.1.2.2
Mutltipliziere mit .
Schritt 2.5.2.4.1.3
Addiere und .
Schritt 2.5.2.4.2
Mutltipliziere mit .
Schritt 2.5.2.4.3
Ändere das zu .
Schritt 2.5.2.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.5.1.1
Potenziere mit .
Schritt 2.5.2.5.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.5.2.5.1.2.1
Mutltipliziere mit .
Schritt 2.5.2.5.1.2.2
Mutltipliziere mit .
Schritt 2.5.2.5.1.3
Addiere und .
Schritt 2.5.2.5.2
Mutltipliziere mit .
Schritt 2.5.2.5.3
Ändere das zu .
Schritt 2.5.2.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 3
Die Werte, die die Ableitung gleich machen, sind .
Schritt 4
Teile in separate Intervalle um die -Werte herum, sodass die Ableitung gleich oder nicht definiert ist.
Schritt 5
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.1.3
Potenziere mit .
Schritt 5.2.1.4
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 5.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 6
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 6.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Potenziere mit .
Schritt 6.2.1.2
Mutltipliziere mit .
Schritt 6.2.1.3
Potenziere mit .
Schritt 6.2.1.4
Mutltipliziere mit .
Schritt 6.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Subtrahiere von .
Schritt 6.2.2.2
Addiere und .
Schritt 6.2.3
Die endgültige Lösung ist .
Schritt 6.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 7
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 7.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Potenziere mit .
Schritt 7.2.1.2
Mutltipliziere mit .
Schritt 7.2.1.3
Potenziere mit .
Schritt 7.2.1.4
Mutltipliziere mit .
Schritt 7.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.2.1
Subtrahiere von .
Schritt 7.2.2.2
Addiere und .
Schritt 7.2.3
Die endgültige Lösung ist .
Schritt 7.3
Bei ist die Ableitung . Da dies negativ ist, nimmt die Funktion im Intervall ab.
Abfallend im Intervall da
Abfallend im Intervall da
Schritt 8
Setze einen Wert aus dem Intervall in die Ableitung ein, um zu bestimmen, ob die Funktion ansteigend oder abfallend ist.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 8.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Potenziere mit .
Schritt 8.2.1.2
Mutltipliziere mit .
Schritt 8.2.1.3
Potenziere mit .
Schritt 8.2.1.4
Mutltipliziere mit .
Schritt 8.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Subtrahiere von .
Schritt 8.2.2.2
Addiere und .
Schritt 8.2.3
Die endgültige Lösung ist .
Schritt 8.3
Bei ist die Ableitung . Da dies positiv ist, steigt die Funktion im Intervall an.
Ansteigend im Intervall , da
Ansteigend im Intervall , da
Schritt 9
Liste die Intervalle auf, in denen die Funktion ansteigt und in denen sie abfällt.
Ansteigend im Intervall:
Abfallend im Intervall:
Schritt 10