Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere.
Schritt 1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Schreibe als um.
Schritt 1.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3.3
Ersetze alle durch .
Schritt 1.2.4
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.6
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.2.7
Addiere und .
Schritt 1.2.8
Mutltipliziere mit .
Schritt 1.2.9
Mutltipliziere mit .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Schreibe als um.
Schritt 1.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3.3
Ersetze alle durch .
Schritt 1.3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.4.3
Ersetze alle durch .
Schritt 1.3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.8
Multipliziere die Exponenten in .
Schritt 1.3.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 1.3.8.2
Mutltipliziere mit .
Schritt 1.3.9
Addiere und .
Schritt 1.3.10
Mutltipliziere mit .
Schritt 1.3.11
Mutltipliziere mit .
Schritt 1.3.12
Potenziere mit .
Schritt 1.3.13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.3.14
Subtrahiere von .
Schritt 1.3.15
Mutltipliziere mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 1.4.3
Vereine die Terme
Schritt 1.4.3.1
Kombiniere und .
Schritt 1.4.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.4.3.3
Subtrahiere von .
Schritt 1.4.3.4
Kombiniere und .
Schritt 2
Schritt 2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Schreibe als um.
Schritt 2.2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3.3
Ersetze alle durch .
Schritt 2.2.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.2.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.2.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.4.3
Ersetze alle durch .
Schritt 2.2.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.8
Multipliziere die Exponenten in .
Schritt 2.2.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.8.2
Mutltipliziere mit .
Schritt 2.2.9
Addiere und .
Schritt 2.2.10
Mutltipliziere mit .
Schritt 2.2.11
Mutltipliziere mit .
Schritt 2.2.12
Potenziere mit .
Schritt 2.2.13
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.14
Subtrahiere von .
Schritt 2.2.15
Mutltipliziere mit .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Schreibe als um.
Schritt 2.3.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3.3
Ersetze alle durch .
Schritt 2.3.4
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.4.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.4.3
Ersetze alle durch .
Schritt 2.3.5
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.8
Multipliziere die Exponenten in .
Schritt 2.3.8.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.8.2
Mutltipliziere mit .
Schritt 2.3.9
Addiere und .
Schritt 2.3.10
Mutltipliziere mit .
Schritt 2.3.11
Mutltipliziere mit .
Schritt 2.3.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.3.12.1
Bewege .
Schritt 2.3.12.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.3.12.3
Subtrahiere von .
Schritt 2.3.13
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.4.3
Vereine die Terme
Schritt 2.4.3.1
Kombiniere und .
Schritt 2.4.3.2
Kombiniere und .
Schritt 2.4.3.3
Ziehe das Minuszeichen vor den Bruch.